

Data Storage Structures

Practice Exercises

- **13.1** Consider the deletion of record 5 from the file of Figure 13.3. Compare the relative merits of the following techniques for implementing the deletion:
 - a. Move record 6 to the space occupied by record 5, and move record 7 to the space occupied by record 6.
 - b. Move record 7 to the space occupied by record 5.
 - c. Mark record 5 as deleted, and move no records.
- 13.2 Show the structure of the file of Figure 13.4 after each of the following steps:
 - a. Insert (24556, Turnamian, Finance, 98000).
 - b. Delete record 2.
 - c. Insert (34556, Thompson, Music, 67000).
- **13.3** Consider the relations *section* and *takes*. Give an example instance of these two relations, with three sections, each of which has five students. Give a file structure of these relations that uses multitable clustering.
- 13.4 Consider the bitmap representation of the free-space map, where for each block in the file, two bits are maintained in the bitmap. If the block is between 0 and 30 percent full the bits are 00, between 30 and 60 percent the bits are 01, between 60 and 90 percent the bits are 10, and above 90 percent the bits are 11. Such bitmaps can be kept in memory even for quite large files.
 - a. Outline two benefits and one drawback to using two bits for a block, instead of one byte as described earlier in this chapter.
 - b. Describe how to keep the bitmap up to date on record insertions and deletions.

42 Chapter 13 Data Storage Structures

- c. Outline the benefit of the bitmap technique over free lists in searching for free space and in updating free space information.
- **13.5** It is important to be able to quickly find out if a block is present in the buffer, and if so where in the buffer it resides. Given that database buffer sizes are very large, what (in-memory) data structure would you use for this task?
- **13.6** Suppose your university has a very large number of *takes* records, accumulated over many years. Explain how table partitioning can be done on the *takes* relation, and what benefits it could offer. Explain also one potential drawback of the technique.
- **13.7** Give an example of a relational-algebra expression and a query-processing strategy in each of the following situations:
 - a. MRU is preferable to LRU.
 - b. LRU is preferable to MRU.
- **13.8** PostgreSQL normally uses a small buffer, leaving it to the operating system buffer manager to manage the rest of main memory available for file system buffering. Explain (a) what is the benefit of this approach, and (b) one key limitation of this approach.