CHAPTER 15

Query Processing

Practice Exercises

15.1

15.2

Assume (for simplicity in this exercise) that only one tuple fits in a block and
memory holds at most three blocks. Show the runs created on each pass of
the sort-merge algorithm when applied to sort the following tuples on the first
attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,
3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),
(baboon, 12).

Consider the bank database of Figure 15.14, where the primary keys are un-
derlined, and the following SQL query:

select 7.branch_-name
from branch T, branch S
where T.assets > S.assets and S.branch_city = “Brooklyn”

Write an efficient relational-algebra expression that is equivalent to this query.
Justify your choice.

branch(branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account_number)

Figure 15.14 Bank database.

47

48

Chapter 15

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10

Query Processing

Let relations r,(4, B, C) and r,(C, D, E) have the following properties: r, has
20,000 tuples, r, has 45,000 tuples, 25 tuples of r, fit on one block, and 30
tuples of r, fit on one block. Estimate the number of block transfers and seeks
required using each of the following join strategies for r; X r,:

a. Nested-loop join.
b. Block nested-loop join.
c. Merge join.

d. Hash join.

The indexed nested-loop join algorithm described in Section 15.5.3 can be
inefficient if the index is a secondary index and there are multiple tuples with
the same value for the join attributes. Why is it inefficient? Describe a way,
using sorting, to reduce the cost of retrieving tuples of the inner relation. Under
what conditions would this algorithm be more efficient than hybrid merge join?

Let and s be relations with no indices, and assume that the relations are not
sorted. Assuming infinite memory, what is the lowest-cost way (in terms of I/O
operations) to compute r X s? What is the amount of memory required for
this algorithm?

Consider the bank database of Figure 15.14, where the primary keys are un-
derlined. Suppose that a B*-tree index on branch_city is available on relation
branch, and that no other index is available. List different ways to handle the
following selections that involve negation:

a. O ~(pranch.city<*Brooklyn”) (branch)
b. o —(branch_city="Brooklyn”) (branch)
C. O ~(branch_city<*Brooklyn” v assets<5000)(br anch)

Write pseudocode for an iterator that implements indexed nested-loop join,
where the outer relation is pipelined. Your pseudocode must define the stan-
dard iterator functions open(), next(), and close(). Show what state information
the iterator must maintain between calls.

Design sort-based and hash-based algorithms for computing the relational di-
vision operation (see Practice Exercise 2.9 for a definition of the division op-
eration).

What is the effect on the cost of merging runs if the number of buffer blocks
per run is increased while overall memory available for buffering runs remains
fixed?

Consider the following extended relational-algebra operators. Describe how to
implement each operation using sorting and using hashing.

15.11

15.12

15.13

15.14

15.15

Practice Exercises 49

a. Semijoin (X): The multiset semijoin operator rXs is defined as follows:
if a tuple r; appears n times in r, it appears # times in the result of 71X
if there is at least one tuple s; such that r, and s; satisfy predicate 6;
otherwise r; does not appear in the result.

b. Anti-semijoin ()Xy): The multiset anti-semijoin operator riXys is defined
as follows: if a tuple r; appears n times in 7, it appears » times in the result
of riXq if there does not exist any tuple s; in s such that r; and s; satisfy
predicate O; otherwise r; does not appear in the result.

Suppose a query retrieves only the first K results of an operation and termi-
nates after that. Which choice of demand-driven or producer-driven pipelining
(with buffering) would be a good choice for such a query? Explain your an-
SWer.

Current generation CPUs include an instruction cache, which caches recently
used instructions. A function call then has a significant overhead because the
set of instructions being executed changes, resulting in cache misses on the
instruction cache.

a. Explain why producer-driven pipelining with buffering is likely to result
in a better instruction cache hit rate, as compared to demand-driven
pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple
results on one call to next(), and returning them together, can improve
the instruction cache hit rate.

Suppose you want to find documents that contain at least k of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.

Suggest how a document containing a word (such as “leopard”) can be in-
dexed such that it is efficiently retrieved by queries using a more general con-
cept (such as “carnivore” or “mammal”). You can assume that the concept
hierarchy is not very deep, so each concept has only a few generalizations (a
concept can, however, have a large number of specializations). You can also
assume that you are provided with a function that returns the concept for each
word in a document. Also suggest how a query using a specialized concept can
retrieve documents using a more general concept.

Explain why the nested-loops join algorithm (see Section 15.5.1) would work
poorly on a database stored in a column-oriented manner. Describe an alterna-
tive algorithm that would work better, and explain why your solution is better.

50 Chapter 15 Query Processing

15.16 Consider the following queries. For each query, indicate if column-oriented
storage is likely to be beneficial or not, and explain why.

a. Fetch ID, name and dept_name of the student with ID 12345.

b. Group the takes relation by year and course_id, and find the total number
of students for each (year, course_id) combination.

	Indexing
	Exercises

