
CHAP T E R

16

Query Optimization

Pratie Exerises

16.1 Download the university database shema and the large university dataset from

dbbook.om. Create the university shema on your favorite database, and load

the large university dataset. Use the explain feature desribed in Note 16.1 on

page 746 to view the plan hosen by the database, in di�erent ases as detailed

below.

a. Write a query with an equality ondition on student.name (whih does

not have an index), and view the plan hosen.

b. Create an index on the attribute student.name, and view the plan hosen

for the above query.

. Create simple queries joining two relations, or three relations, and view

the plans hosen.

d. Create a query that omputes an aggregate with grouping, and view the

plan hosen.

e. Create an SQL query whose hosen plan uses a semijoin operation.

f. Create an SQL query that uses a not in lause, with a subquery using

aggregation. Observe what plan is hosen.

g. Create a query for whih the hosen plan uses orrelated evaluation (the

way orrelated evaluation is represented varies by database, but most

databases would show a �lter or a projet operator with a subplan or

subquery).

h. Create an SQL update query that updates a single row in a relation. View

the plan hosen for the update query.

51

http://dbbook.com


52 Chapter 16 Query Optimization

i. Create an SQL update query that updates a large number of rows in a re-

lation, using a subquery to ompute the new value. View the plan hosen

for the update query.

16.2 Show that the following equivalenes hold. Explain how you an apply them

to improve the e	ieny of ertain queries:

a. E

1

Æ

�

(E

2

* E

3

) � (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

b. �

�

(

A



F

(E)) �

A



F

(�

�

(E)), where � uses only attributes from A.

. �

�

(E

1

�E

2

) � �

�

(E

1

)�E

2

, where � uses only attributes from E

1

.

16.3 For eah of the following pairs of expressions, give instanes of relations that

show the expressions are not equivalent.

a. �

A

(r * s) and �

A

(r) * �

A

(s).

b. �

B<4

(

A



max(B) as B

(r)) and

A



max(B) as B

(�

B<4

(r)).

. In the preeding expressions, if both ourrenes of max were replaed

by min, would the expressions be equivalent?

d. (r� s)� t and r�(s� t)

In other words, the natural right outer join is not assoiative.

e. �

�

(E

1

�E

2

) and E

1

� �

�

(E

2

), where � uses only attributes from E

2

.

16.4 SQL allows relations with dupliates (Chapter 3), and the multiset version of

the relational algebra is de�ned in Note 3.1 on page 80, Note 3.2 on page 97,

and Note 3.3 on page 108. Chek whih of the equivalene rules 1 through 7.b

hold for the multiset version of the relational algebra.

16.5 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F), with primary keys

A, C, and E, respetively. Assume that r

1

has 1000 tuples, r

2

has 1500 tuples,

and r

3

has 750 tuples. Estimate the size of r

1

Æ r

2

Æ r

3

, and give an e	ient

strategy for omputing the join.

16.6 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F) of Pratie Exer-

ise 16.5. Assume that there are no primary keys, exept the entire shema.

Let V (C, r

1

) be 900, V (C, r

2

) be 1100, V (E, r

2

) be 50, and V (E, r

3

) be 100.

Assume that r

1

has 1000 tuples, r

2

has 1500 tuples, and r

3

has 750 tuples. Es-

timate the size of r

1

Æ r

2

Æ r

3

and give an e	ient strategy for omputing

the join.

16.7 Suppose that a B

+

-tree index on building is available on relation department

and that no other index is available. What would be the best way to handle the

following seletions that involve negation?

a. �

� (building < �Watson�)

(department)



Pratie Exerises 53

b. �

� (building = �Watson�)

(department)

. �

� (building < �Watson� â budget < 50000)

(department)

16.8 Consider the query:

selet *

from r, s

where upper(r:A) = upper(s:A);

where �upper� is a funtion that returns its input argument with all lowerase

letters replaed by the orresponding upperase letters.

a. Find out what plan is generated for this query on the database system

you use.

b. Some database systems would use a (blok) nested-loop join for this

query, whih an be very ine	ient. Brie�y explain how hash-join or

merge-join an be used for this query.

16.9 Give onditions under whih the following expressions are equivalent:

A,B



agg(C)

(E

1

Æ E

2

) and (

A



agg(C)

(E

1

)) Æ E

2

where agg denotes any aggregation operation. How an the above onditions

be relaxed if agg is one of min or max?

16.10 Consider the issue of interesting orders in optimization. Suppose you are given

a query that omputes the natural join of a set of relations S. Given a subset

S1 of S, what are the interesting orders of S1?

16.11 Modify the FindBestPlan(S) funtion to reate a funtion FindBestPlan(S,O),

where O is a desired sort order for S, and whih onsiders interesting sort

orders. A null order indiates that the order is not relevant.Hints: An algorithm

A may give the desired order O; if not a sort operation may need to be added

to get the desired order. If A is a merge-join, FindBestPlan must be invoked on

the two inputs with the desired orders for the inputs.

16.12 Show that, with n relations, there are (2(n*1))�_(n*1)� di�erent join orders.

Hint: A omplete binary tree is one where every internal node has exatly two

hildren. Use the fat that the number of di�erent omplete binary trees with

n leaf nodes is:

1

n

0

2(n * 1)

(n * 1)

1

If you wish, you an derive the formula for the number of omplete binary trees

with n nodes from the formula for the number of binary trees with n nodes.

The number of binary trees with n nodes is:

1

n + 1

0

2n

n

1



54 Chapter 16 Query Optimization

This number is known as the Catalan number, and its derivation an be found

in any standard textbook on data strutures or algorithms.

16.13 Show that the lowest-ost join order an be omputed in time O(3

n

). Assume

that you an store and look up information about a set of relations (suh as

the optimal join order for the set, and the ost of that join order) in onstant

time. (If you �nd this exerise di	ult, at least show the looser time bound of

O(2

2n

).)

16.14 Show that, if only left-deep join trees are onsidered, as in the System R opti-

mizer, the time taken to �nd themost e	ient join order is around n2

n

. Assume

that there is only one interesting sort order.

16.15 Consider the bank database of Figure 16.9, where the primary keys are under-

lined. Construt the following SQL queries for this relational database.

a. Write a nested query on the relation aount to �nd, for eah branh

with name starting with B, all aounts with the maximum balane at

the branh.

b. Rewrite the preeding query without using a nested subquery; in other

words, deorrelate the query, but in SQL.

. Give a relational algebra expression using semijoin equivalent to the

query.

d. Give a proedure (similar to that desribed in Setion 16.4.4) for deor-

relating suh queries.

branh(branh name, branh ity, assets)

ustomer (ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ustomer name, loan number)

aount (aount number, branh name, balane )

depositor (ustomer name, aount number)

Figure 16.9 Banking database.


	Query Processing
	Exercises


