
CHAP T E R

16

Query Optimization

Pra
ti
e Exer
ises

16.1 Download the university database s
hema and the large university dataset from

dbbook.
om. Create the university s
hema on your favorite database, and load

the large university dataset. Use the explain feature des
ribed in Note 16.1 on

page 746 to view the plan 
hosen by the database, in di�erent 
ases as detailed

below.

a. Write a query with an equality 
ondition on student.name (whi
h does

not have an index), and view the plan 
hosen.

b. Create an index on the attribute student.name, and view the plan 
hosen

for the above query.


. Create simple queries joining two relations, or three relations, and view

the plans 
hosen.

d. Create a query that 
omputes an aggregate with grouping, and view the

plan 
hosen.

e. Create an SQL query whose 
hosen plan uses a semijoin operation.

f. Create an SQL query that uses a not in 
lause, with a subquery using

aggregation. Observe what plan is 
hosen.

g. Create a query for whi
h the 
hosen plan uses 
orrelated evaluation (the

way 
orrelated evaluation is represented varies by database, but most

databases would show a �lter or a proje
t operator with a subplan or

subquery).

h. Create an SQL update query that updates a single row in a relation. View

the plan 
hosen for the update query.

51

http://dbbook.com


52 Chapter 16 Query Optimization

i. Create an SQL update query that updates a large number of rows in a re-

lation, using a subquery to 
ompute the new value. View the plan 
hosen

for the update query.

16.2 Show that the following equivalen
es hold. Explain how you 
an apply them

to improve the e	
ien
y of 
ertain queries:

a. E

1

Æ

�

(E

2

* E

3

) � (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

b. �

�

(

A




F

(E)) �

A




F

(�

�

(E)), where � uses only attributes from A.


. �

�

(E

1

�E

2

) � �

�

(E

1

)�E

2

, where � uses only attributes from E

1

.

16.3 For ea
h of the following pairs of expressions, give instan
es of relations that

show the expressions are not equivalent.

a. �

A

(r * s) and �

A

(r) * �

A

(s).

b. �

B<4

(

A




max(B) as B

(r)) and

A




max(B) as B

(�

B<4

(r)).


. In the pre
eding expressions, if both o

urren
es of max were repla
ed

by min, would the expressions be equivalent?

d. (r� s)� t and r�(s� t)

In other words, the natural right outer join is not asso
iative.

e. �

�

(E

1

�E

2

) and E

1

� �

�

(E

2

), where � uses only attributes from E

2

.

16.4 SQL allows relations with dupli
ates (Chapter 3), and the multiset version of

the relational algebra is de�ned in Note 3.1 on page 80, Note 3.2 on page 97,

and Note 3.3 on page 108. Che
k whi
h of the equivalen
e rules 1 through 7.b

hold for the multiset version of the relational algebra.

16.5 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F), with primary keys

A, C, and E, respe
tively. Assume that r

1

has 1000 tuples, r

2

has 1500 tuples,

and r

3

has 750 tuples. Estimate the size of r

1

Æ r

2

Æ r

3

, and give an e	
ient

strategy for 
omputing the join.

16.6 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F) of Pra
ti
e Exer-


ise 16.5. Assume that there are no primary keys, ex
ept the entire s
hema.

Let V (C, r

1

) be 900, V (C, r

2

) be 1100, V (E, r

2

) be 50, and V (E, r

3

) be 100.

Assume that r

1

has 1000 tuples, r

2

has 1500 tuples, and r

3

has 750 tuples. Es-

timate the size of r

1

Æ r

2

Æ r

3

and give an e	
ient strategy for 
omputing

the join.

16.7 Suppose that a B

+

-tree index on building is available on relation department

and that no other index is available. What would be the best way to handle the

following sele
tions that involve negation?

a. �

� (building < �Watson�)

(department)



Pra
ti
e Exer
ises 53

b. �

� (building = �Watson�)

(department)


. �

� (building < �Watson� â budget < 50000)

(department)

16.8 Consider the query:

sele
t *

from r, s

where upper(r:A) = upper(s:A);

where �upper� is a fun
tion that returns its input argument with all lower
ase

letters repla
ed by the 
orresponding upper
ase letters.

a. Find out what plan is generated for this query on the database system

you use.

b. Some database systems would use a (blo
k) nested-loop join for this

query, whi
h 
an be very ine	
ient. Brie�y explain how hash-join or

merge-join 
an be used for this query.

16.9 Give 
onditions under whi
h the following expressions are equivalent:

A,B




agg(C)

(E

1

Æ E

2

) and (

A




agg(C)

(E

1

)) Æ E

2

where agg denotes any aggregation operation. How 
an the above 
onditions

be relaxed if agg is one of min or max?

16.10 Consider the issue of interesting orders in optimization. Suppose you are given

a query that 
omputes the natural join of a set of relations S. Given a subset

S1 of S, what are the interesting orders of S1?

16.11 Modify the FindBestPlan(S) fun
tion to 
reate a fun
tion FindBestPlan(S,O),

where O is a desired sort order for S, and whi
h 
onsiders interesting sort

orders. A null order indi
ates that the order is not relevant.Hints: An algorithm

A may give the desired order O; if not a sort operation may need to be added

to get the desired order. If A is a merge-join, FindBestPlan must be invoked on

the two inputs with the desired orders for the inputs.

16.12 Show that, with n relations, there are (2(n*1))�_(n*1)� di�erent join orders.

Hint: A 
omplete binary tree is one where every internal node has exa
tly two


hildren. Use the fa
t that the number of di�erent 
omplete binary trees with

n leaf nodes is:

1

n

0

2(n * 1)

(n * 1)

1

If you wish, you 
an derive the formula for the number of 
omplete binary trees

with n nodes from the formula for the number of binary trees with n nodes.

The number of binary trees with n nodes is:

1

n + 1

0

2n

n

1



54 Chapter 16 Query Optimization

This number is known as the Catalan number, and its derivation 
an be found

in any standard textbook on data stru
tures or algorithms.

16.13 Show that the lowest-
ost join order 
an be 
omputed in time O(3

n

). Assume

that you 
an store and look up information about a set of relations (su
h as

the optimal join order for the set, and the 
ost of that join order) in 
onstant

time. (If you �nd this exer
ise di	
ult, at least show the looser time bound of

O(2

2n

).)

16.14 Show that, if only left-deep join trees are 
onsidered, as in the System R opti-

mizer, the time taken to �nd themost e	
ient join order is around n2

n

. Assume

that there is only one interesting sort order.

16.15 Consider the bank database of Figure 16.9, where the primary keys are under-

lined. Constru
t the following SQL queries for this relational database.

a. Write a nested query on the relation a

ount to �nd, for ea
h bran
h

with name starting with B, all a

ounts with the maximum balan
e at

the bran
h.

b. Rewrite the pre
eding query without using a nested subquery; in other

words, de
orrelate the query, but in SQL.


. Give a relational algebra expression using semijoin equivalent to the

query.

d. Give a pro
edure (similar to that des
ribed in Se
tion 16.4.4) for de
or-

relating su
h queries.

bran
h(bran
h name, bran
h 
ity, assets)


ustomer (
ustomer name, 
ustomer street, 
ustomer 
ity)

loan (loan number, bran
h name, amount)

borrower (
ustomer name, loan number)

a

ount (a

ount number, bran
h name, balan
e )

depositor (
ustomer name, a

ount number)

Figure 16.9 Banking database.


	Query Processing
	Exercises


