
CHAP T E R

19

Re
overy System

Pra
ti
e Exer
ises

19.1 Explain why log re
ords for transa
tions on the undo-list must be pro
essed in

reverse order, whereas redo is performed in a forward dire
tion.

19.2 Explain the purpose of the 
he
kpoint me
hanism. How often should 
he
k-

points be performed? How does the frequen
y of 
he
kpoints a�e
t:

�

System performan
e when no failure o

urs?

�

The time it takes to re
over from a system 
rash?

�

The time it takes to re
over from a media (disk) failure?

19.3 Some database systems allow the administrator to 
hoose between two forms

of logging: normal logging, used to re
over from system 
rashes, and ar
hival

logging, used to re
over from media (disk) failure. When 
an a log re
ord be

deleted, in ea
h of these 
ases, using the re
overy algorithm of Se
tion 19.4?

19.4 Des
ribe how to modify the re
overy algorithm of Se
tion 19.4 to implement

savepoints and to perform rollba
k to a savepoint. (Savepoints are des
ribed

in Se
tion 19.9.3.)

19.5 Suppose the deferred modi�
ation te
hnique is used in a database.

a. Is the old value part of an update log re
ord required any more? Why or

why not?

b. If old values are not stored in update log re
ords, transa
tion undo is


learly not feasible. How would the redo phase of re
overy have to be

modi�ed as a result?


. Deferred modi�
ation 
an be implemented by keeping updated data

items in lo
al memory of transa
tions and reading data items that have

not been updated dire
tly from the database bu�er. Suggest how to e	-

61



62 Chapter 19 Re
overy System


iently implement a data item read, ensuring that a transa
tion sees its

own updates.

d. What problem would arise with the above te
hnique if transa
tions per-

form a large number of updates?

19.6 The shadow-paging s
heme requires the page table to be 
opied. Suppose the

page table is represented as a B

+

-tree.

a. Suggest how to share as many nodes as possible between the new 
opy

and the shadow 
opy of the B

+

-tree, assuming that updates are made

only to leaf entries, with no insertions or deletions.

b. Even with the above optimization, logging is mu
h 
heaper than a

shadow 
opy s
heme, for transa
tions that perform small updates. Ex-

plain why.

19.7 Suppose we (in
orre
tly) modify the re
overy algorithm of Se
tion 19.4 to

note log a
tions taken during transa
tion rollba
k. When re
overing from a

system 
rash, transa
tions that were rolled ba
k earlier would then be in
luded

in undo-list and rolled ba
k again. Give an example to show how a
tions taken

during the undo phase of re
overy 
ould result in an in
orre
t database state.

(Hint: Consider a data item updated by an aborted transa
tion and then up-

dated by a transa
tion that 
ommits.)

19.8 Disk spa
e allo
ated to a �le as a result of a transa
tion should not be released

even if the transa
tion is rolled ba
k. Explain why, and explain how ARIES

ensures that su
h a
tions are not rolled ba
k.

19.9 Suppose a transa
tion deletes a re
ord, and the free spa
e generated thus is

allo
ated to a re
ord inserted by another transa
tion, even before the �rst trans-

a
tion 
ommits.

a. What problem 
an o

ur if the �rst transa
tion needs to be rolled ba
k?

b. Would this problem be an issue if page-level lo
king is used instead of

tuple-level lo
king?


. Suggest how to solve this problem while supporting tuple-level lo
king,

by logging post-
ommit a
tions in spe
ial log re
ords, and exe
uting

them after 
ommit. Make sure your s
heme ensures that su
h a
tions

are performed exa
tly on
e.

19.10 Explain the reasons why re
overy of intera
tive transa
tions is more di	
ult

to deal with than is re
overy of bat
h transa
tions. Is there a simple way to deal

with this di	
ulty? (Hint: Consider an automati
 teller ma
hine transa
tion

in whi
h 
ash is withdrawn.)



Pra
ti
e Exer
ises 63

19.11 Sometimes a transa
tion has to be undone after it has 
ommitted be
ause it

was erroneously exe
uted�for example, be
ause of erroneous input by a bank

teller.

a. Give an example to show that using the normal transa
tion undo me
h-

anism to undo su
h a transa
tion 
ould lead to an in
onsistent state.

b. One way to handle this situation is to bring the whole database to a state

prior to the 
ommit of the erroneous transa
tion (
alled point-in-time re-


overy). Transa
tions that 
ommitted later have their e�e
ts rolled ba
k

with this s
heme.

Suggest a modi�
ation to the re
overy algorithm of Se
tion 19.4 to

implement point-in-time re
overy using database dumps.


. Later nonerroneous transa
tions 
an be reexe
uted logi
ally, if the up-

dates are available in the form of SQL but 
annot be reexe
uted using

their log re
ords. Why?

19.12 The re
overy te
hniques that we des
ribed assume that blo
ks are written

atomi
ally to disk. However, a blo
k may be partially written when power fails,

with some se
tors written, and others not yet written.

a. What problems 
an partial blo
k writes 
ause?

b. Partial blo
k writes 
an be dete
ted using te
hniques similar to those

used to validate se
tor reads. Explain how.


. Explain how RAID 1 
an be used to re
over from a partially written

blo
k, restoring the blo
k to either its old value or to its new value.

19.13 The Ora
le database system uses undo log re
ords to provide a snapshot view

of the database under snapshot isolation. The snapshot view seen by transa
-

tion T

i

re�e
ts updates of all transa
tions that had 
ommitted when T

i

started

and the updates of T

i

; updates of all other transa
tions are not visible to T

i

.

Des
ribe a s
heme for bu�er handling whereby transa
tions are given a

snapshot view of pages in the bu�er. In
lude details of how to use the log to

generate the snapshot view. You 
an assume that operations as well as their

undo a
tions a�e
t only one page.




	Concurrency Control
	Exercises


