
CHAP T E R

22

Parallel and Distributed Query

Pro
essing

Pra
ti
e Exer
ises

22.1 What form of parallelism (interquery, interoperation, or intraoperation) is

likely to be the most important for ea
h of the following tasks?

a. In
reasing the throughput of a system with many small queries

b. In
reasing the throughput of a system with a few large queries when the

number of disks and pro
essors is large

22.2 Des
ribe how partial aggregation
an be implemented for the
ount and avg

aggregate fun
tions to redu
e data transfer.

22.3 With pipelined parallelism, it is often a good idea to perform several operations

in a pipeline on a single pro
essor, even when many pro
essors are available.

a. Explain why.

b. Would the arguments you advan
ed in part a hold if the ma
hine has a

shared-memory ar
hite
ture? Explain why or why not.

. Would the arguments in part a hold with independent parallelism? (That

is, are there
ases where, even if the operations are not pipelined and

there are many pro
essors available, it is still a good idea to perform

several operations on the same pro
essor?)

22.4 Consider join pro
essing using symmetri
 fragment and repli
ate with range

partitioning. How
an you optimize the evaluation if the join
ondition is of

the form Ý r:A * s:B Ý f k, where k is a small
onstant? Here, Ý x Ý denotes

the absolute value of x. A join with su
h a join
ondition is
alled a band join.

71

72 Chapter 22 Parallel and Distributed Query Pro
essing

22.5 Suppose relation r is stored partitioned and indexed on A, and s is stored par-

titioned and indexed on B. Consider the query:

r:C

ount(s:D)

((�

A>5

(r)) Æ

r:B=s:B

s)

a. Give a parallel query plan using the ex
hange operator, for
omputing

the subtree of the query involving only the sele
t and join operators.

b. Now extend the above to
ompute the aggregate. Make sure to use pre-

aggregation to minimize the data transfer.

. Skew during aggregation is a serious problem. Explain how pre-

aggregation as above
an also signi�
antly redu
e the e�e
t of skew dur-

ing aggregation.

22.6 Suppose relation r is stored partitioned and indexed on A, and s is stored parti-

tioned and indexed on B. Consider the join r Æ

r:B=s:B

s. Suppose s is relatively

small, but not small enough to make asymmetri
 fragment-and-repli
ate join

the best
hoi
e, and r is large, with most r tuples not mat
hing any s tuple. A

hash-join
an be performed but with a semijoin �lter used to redu
e the data

transfer. Explain how semijoin �ltering using Bloom �lters would work in this

parallel join setting.

22.7 Suppose you want to
ompute r�

r:A=s:A

s.

a. Suppose s is a small relation, while r is stored partitioned on r:B. Give

an e	
ient parallel algorithm for
omputing the left outer join.

b. Now suppose that r is a small relation, and s is a large relation, stored

partitioned on attribute s:B. Give an e	
ient parallel algorithm for
om-

puting the above left outer join.

22.8 Suppose you want to
ompute

A,B

sum(C)

on a relation s whi
h is stored par-

titioned on s:B. Explain how you would do it e	
iently, minimizing/avoiding

repartitioning, if the number of distin
t s:B values is large, and the distribution

of number of tuples with ea
h s:B value is relatively uniform.

22.9 MapRedu
e implementations provide fault toleran
e, where you
an reexe
ute

only failed mappers or redu
ers. By default, a partitioned parallel join exe
u-

tion would have to be rerun
ompletely in
ase of even one node failure. It is

possible to modify a parallel partitioned join exe
ution to add fault toleran
e

in a manner similar to MapRedu
e, so failure of a node does not require full

reexe
ution of the query, but only a
tions related to that node. Explain what

needs to be done at the time of partitioning at the sending node and re
eiving

node to do this.

22.10 If a parallel data-store is used to store two relations r and s and we need to join

r and s, it may be useful to maintain the join as a materialized view. What are

Pra
ti
e Exer
ises 73

the bene�ts and overheads in terms of overall throughput, use of spa
e, and

response time to user queries?

22.11 Explain how ea
h of the following join algorithms
an be implemented using

the MapRedu
e framework:

a. Broad
ast join (also known as asymmetri
 fragment-and-repli
ate join).

b. Indexed nested loop join, where the inner relation is stored in a parallel

data-store.

. Partitioned join.

	Parallel and Distributed Storage
	Exercises

