
CHAP T E R

22

Parallel and Distributed Query

Proessing

Pratie Exerises

22.1 What form of parallelism (interquery, interoperation, or intraoperation) is

likely to be the most important for eah of the following tasks?

a. Inreasing the throughput of a system with many small queries

b. Inreasing the throughput of a system with a few large queries when the

number of disks and proessors is large

22.2 Desribe how partial aggregation an be implemented for the ount and avg

aggregate funtions to redue data transfer.

22.3 With pipelined parallelism, it is often a good idea to perform several operations

in a pipeline on a single proessor, even when many proessors are available.

a. Explain why.

b. Would the arguments you advaned in part a hold if the mahine has a

shared-memory arhiteture? Explain why or why not.

. Would the arguments in part a hold with independent parallelism? (That

is, are there ases where, even if the operations are not pipelined and

there are many proessors available, it is still a good idea to perform

several operations on the same proessor?)

22.4 Consider join proessing using symmetri fragment and repliate with range

partitioning. How an you optimize the evaluation if the join ondition is of

the form Ý r:A * s:B Ý f k, where k is a small onstant? Here, Ý x Ý denotes

the absolute value of x. A join with suh a join ondition is alled a band join.

71

72 Chapter 22 Parallel and Distributed Query Proessing

22.5 Suppose relation r is stored partitioned and indexed on A, and s is stored par-

titioned and indexed on B. Consider the query:

r:C

ount(s:D)

((�

A>5

(r)) Æ

r:B=s:B

s)

a. Give a parallel query plan using the exhange operator, for omputing

the subtree of the query involving only the selet and join operators.

b. Now extend the above to ompute the aggregate. Make sure to use pre-

aggregation to minimize the data transfer.

. Skew during aggregation is a serious problem. Explain how pre-

aggregation as above an also signi�antly redue the e�et of skew dur-

ing aggregation.

22.6 Suppose relation r is stored partitioned and indexed on A, and s is stored parti-

tioned and indexed on B. Consider the join r Æ

r:B=s:B

s. Suppose s is relatively

small, but not small enough to make asymmetri fragment-and-repliate join

the best hoie, and r is large, with most r tuples not mathing any s tuple. A

hash-join an be performed but with a semijoin �lter used to redue the data

transfer. Explain how semijoin �ltering using Bloom �lters would work in this

parallel join setting.

22.7 Suppose you want to ompute r�

r:A=s:A

s.

a. Suppose s is a small relation, while r is stored partitioned on r:B. Give

an e	ient parallel algorithm for omputing the left outer join.

b. Now suppose that r is a small relation, and s is a large relation, stored

partitioned on attribute s:B. Give an e	ient parallel algorithm for om-

puting the above left outer join.

22.8 Suppose you want to ompute

A,B

sum(C)

on a relation s whih is stored par-

titioned on s:B. Explain how you would do it e	iently, minimizing/avoiding

repartitioning, if the number of distint s:B values is large, and the distribution

of number of tuples with eah s:B value is relatively uniform.

22.9 MapRedue implementations provide fault tolerane, where you an reexeute

only failed mappers or reduers. By default, a partitioned parallel join exeu-

tion would have to be rerun ompletely in ase of even one node failure. It is

possible to modify a parallel partitioned join exeution to add fault tolerane

in a manner similar to MapRedue, so failure of a node does not require full

reexeution of the query, but only ations related to that node. Explain what

needs to be done at the time of partitioning at the sending node and reeiving

node to do this.

22.10 If a parallel data-store is used to store two relations r and s and we need to join

r and s, it may be useful to maintain the join as a materialized view. What are

Pratie Exerises 73

the bene�ts and overheads in terms of overall throughput, use of spae, and

response time to user queries?

22.11 Explain how eah of the following join algorithms an be implemented using

the MapRedue framework:

a. Broadast join (also known as asymmetri fragment-and-repliate join).

b. Indexed nested loop join, where the inner relation is stored in a parallel

data-store.

. Partitioned join.

	Parallel and Distributed Storage
	Exercises

