
CHAP T E R

23

Parallel and Distributed

Transa
tion Pro
essing

Pra
ti
e Exer
ises

23.1 What are the key di�eren
es between a lo
al-area network and a wide-area

network, that a�e
t the design of a distributed database?

23.2 To build a highly available distributed system, you must know what kinds of

failures 
an o

ur.

a. List possible types of failure in a distributed system.

b. Whi
h items in your list from part a are also appli
able to a 
entralized

system?

23.3 Consider a failure that o

urs during 2PC for a transa
tion. For ea
h possible

failure that you listed in Exer
ise 23.2a, explain how 2PC ensures transa
tion

atomi
ity despite the failure.

23.4 Consider a distributed system with two sites, A and B. Can site A distinguish

among the following?

�

B goes down.

�

The link between A and B goes down.

�

B is extremely overloaded and response time is 100 times longer than nor-

mal.

What impli
ations does your answer have for re
overy in distributed systems?

23.5 The persistent messaging s
heme des
ribed in this 
hapter depends on time-

stamps. A drawba
k is that they 
an dis
ard re
eived messages only if they are

too old, and may need to keep tra
k of a large number of re
eived messages.

Suggest an alternative s
heme based on sequen
e numbers instead of time-

stamps, that 
an dis
ard messages more rapidly.

75



76 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

23.6 Explain the di�eren
e between data repli
ation in a distributed system and the

maintenan
e of a remote ba
kup site.

23.7 Give an example where lazy repli
ation 
an lead to an in
onsistent database

state even when updates get an ex
lusive lo
k on the primary (master) 
opy if

data were read from a node other than the master.

23.8 Consider the following deadlo
k-dete
tion algorithm. When transa
tion T

i

, at

site S

1

, requests a resour
e from T

j

, at site S

3

, a request message with time-

stamp n is sent. The edge (T

i

,T

j

, n) is inserted in the lo
al wait-for graph of

S

1

. The edge (T

i

,T

j

, n) is inserted in the lo
al wait-for graph of S

3

only if T

j

has re
eived the request message and 
annot immediately grant the requested

resour
e. A request from T

i

to T

j

in the same site is handled in the usual man-

ner; no timestamps are asso
iated with the edge (T

i

,T

j

). A 
entral 
oordinator

invokes the dete
tion algorithm by sending an initiating message to ea
h site

in the system.

On re
eiving this message, a site sends its lo
al wait-for graph to the 
o-

ordinator. Note that su
h a graph 
ontains all the lo
al information that the

site has about the state of the real graph. The wait-for graph re�e
ts an instan-

taneous state of the site, but it is not syn
hronized with respe
t to any other

site.

When the 
ontroller has re
eived a reply from ea
h site, it 
onstru
ts a

graph as follows:

�

The graph 
ontains a vertex for every transa
tion in the system.

�

The graph has an edge (T

i

,T

j

) if and only if:

°

There is an edge (T

i

,T

j

) in one of the wait-for graphs.

°

An edge (T

i

,T

j

, n) (for some n) appears in more than one wait-for

graph.

Show that, if there is a 
y
le in the 
onstru
ted graph, then the system is in a

deadlo
k state, and that, if there is no 
y
le in the 
onstru
ted graph, then the

system was not in a deadlo
k state when the exe
ution of the algorithm began.

23.9 Consider the 
hain-repli
ation proto
ol, des
ribed in Se
tion 23.4.3.2, whi
h

is a variant of the primary-
opy proto
ol.

a. If lo
king is used for 
on
urren
y 
ontrol, what is the earliest point when

a pro
ess 
an release an ex
lusive lo
k after updating a data item?

b. While ea
h data item 
ould have its own 
hain, give two reasons it would

be preferable to have a 
hain de�ned at a higher level, su
h as for ea
h

partition or tablet.


. How 
an 
onsensus proto
ols be used to ensure that the 
hain is

uniquely determined at any point in time?



Pra
ti
e Exer
ises 77

23.10 If the primary 
opy s
heme is used for repli
ation, and the primary gets dis-


onne
ted from the rest of the system, a new node may get ele
ted as primary.

But the old primary may not realize it has got dis
onne
ted, and may get re-


onne
ted subsequently without realizing that there is a new primary.

a. What problems 
an arise if the old primary does not realize that a new

one has taken over?

b. How 
an leases be used to avoid these problems?


. Would su
h a situation, where a parti
ipant node gets dis
onne
ted and

then re
onne
ted without realizing it was dis
onne
ted, 
ause any prob-

lem with the majority or quorum proto
ols?

23.11 Consider a federated database system in whi
h it is guaranteed that at most

one global transa
tion is a
tive at any time, and every lo
al site ensures lo
al

serializability.

a. Suggest ways in whi
h the federated database system 
an ensure that

there is at most one a
tive global transa
tion at any time.

b. Show by example that it is possible for a nonserializable global s
hedule

to result despite the assumptions.

23.12 Consider a federated database system in whi
h every lo
al site ensures lo
al

serializability, and all global transa
tions are read only.

a. Show by example that nonserializable exe
utions may result in su
h a

system.

b. Show how you 
ould use a ti
ket s
heme to ensure global serializability.

23.13 Suppose you have a large relation r(A,B,C) and a materialized view

v =

A




sum(B)

(r). View maintenan
e 
an be performed as part of ea
h trans-

a
tion that updates r, on a parallel/distributed storage system that supports

transa
tions a
ross multiple nodes. Suppose the system uses two-phase 
om-

mit along with a 
onsensus proto
ol su
h as Paxos, a
ross geographi
ally dis-

tributed data 
enters.

a. Explain why it is not a good idea to perform view maintenan
e as part of

the update transa
tion, if some values of attribute A are �hot� at 
ertain

points in time, that is, many updates pertain to those values of A.

b. Explain how operation lo
king (if supported) 
ould solve this problem.


. Explain the tradeo�s of using asyn
hronous view maintenan
e in this


ontext.




	Parallel and Distributed Query Processing
	Exercises


