
C H A P T E R

17

Transactions

Practice Exercises

17.1 Suppose t hat t here is a dat abase system t hat never fails. Is a recover y manager

required for t his system?

Answer :

Even in t his case t he recover y manager is needed to per for m rollback of abor ted

transactions for cases where t he transaction itself fails.

17.2 Consider a �le system such as t he one on your favor ite operating system.

a. What are t he steps involved in t he creation and deletion of �les and in

wr iting dat a to a �le?

b. Explain how t he issues of atomicit y and durabilit y are relevant to t he

creation and deletion of �les and to wr iting dat a to �les.

Answer :

There are several steps in t he creation of a �le. A storage area is assigned to t he

�le in t he �le system. (In UNIX , a unique i-number is given to t he �le and an

i-node entr y is inser ted into t he i-list.) Deletion of �le involves ex actly opposite

steps.

For t he �le system user, durabilit y is impor t ant for obvious reasons, but

atomicit y is not relevant generally as t he �le system doesn't suppor t transac-

tions. To t he �le system implementor, t hough, many of t he inter nal �le sys-

tem actions need to have transaction semantics. All steps involved in cre-

ation/deletion of t he �le must be atomic, ot her wise t here will be unreference-

able �les or unusable areas in t he �le system.

17.3 Dat abase-system implementer s have paid much more attention to t he ACID

proper ties t han have �le-system implementer s. Why might t his be t he case?

Answer :

131

132 Chapter 17 Transactions

Dat abase systems usually per for m cr ucial t ask s whose e�ects need to be atomic

and durable, and whose outcome a�ects t he real world in a per manent manner.

Ex amples of such t ask s are monet ar y transactions, seat bookings etc. Hence

t he ACID proper ties have to be ensured. In contrast, most user s of �le systems

would not be willing to pay t he pr ice (monet ar y, disk space, time) of suppor ting

ACID proper ties.

17.4 What class or classes of storage can be used to ensure durabilit y? Why?

Answer :

Only st able storage ensures tr ue durabilit y. Even nonvolatile storage is suscep-

tible to dat a loss, albeit less so t han volatile storage. St able storage is only an

abstraction. It is approximated by redundant use of nonvolatile storage in which

dat a are not only replicated but distr ibuted phyically to reduce to near zero t he

chance of a sing le event casuing dat a loss.

17.5 Since ever y con�ict-ser ializable schedule is view ser ializable, why do we em-

phasize con�ict ser ializabilit y rat her t han view ser ializabilit y?

Answer :

Most of t he concur rency control protocols (protocols for ensur ing t hat only

ser ializable schedules are generated) used in practice are based on con�ict

ser ializabilit y — t hey actually per mit only a subset of con�ict ser ializable sched-

ules. The general for m of view ser ializabilit y is ver y expensive to test, and only

a ver y restr icted for m of it is used for concur rency control.

17.6 Consider t he precedence g raph of Figure 17.16. Is t he cor responding schedule

con�ict ser ializable? Explain your answer.

Answer :

T1

T4

T5

T3

T2

Figure 17.16 Precedence graph for Practice Exercise 17.6.

Practice Exercises 133

There is a ser ializable schedule cor responding to t he precedence g raph since

t he g raph is acyclic. A possible schedule is obt ained by doing a topological

sor t, t hat is, T

1

, T

2

, T

3

, T

4

, T

5

.

17.7 What is a cascadeless schedule? Why is cascadelessness of schedules desir-

able? Are t here any circumst ances under which it would be desirable to allow

noncascadeless schedules? Explain your answer.

Answer :

A cascadeless schedule is one where, for each pair of transactions T

i

and T

j

such t hat T

j

reads dat a items previously wr itten by T

i

, t he commit operation of

T

i

appear s before t he read operation of T

j

. Cascadeless schedules are desirable

because t he failure of a transaction does not lead to t he abor ting of any ot her

transaction. Of cour se t his comes at t he cost of less concur rency. If failures

occur rarely, so t hat we can pay t he pr ice of cascading abor ts for t he increased

concur rency, noncascadeless schedules might be desirable.

17.8 The lost update anomaly is said to occur if a transaction T

j

reads a dat a item,

t hen anot her transaction T

k

wr ites t he dat a item (possibly based on a previous

read), af ter which T

j

wr ites t he dat a item. The update per for med by T

k

has

been lost, since t he update done by T

j

ignored t he value wr itten by T

k

.

a. Give an ex ample of a schedule showing t he lost update anomaly.

b. Give an ex ample schedule to show t hat t he lost update anomaly is possi-

ble wit h t he read committed isolation level.

c. Explain why t he lost update anomaly is not possible wit h t he repeat able

read isolation level.

Answer :

a. A schedule showing t he lost update anomaly :

T1 T2

read(A)

write(A)

read(A)
write(A)

In t he above schedule, t he value wr itten by t he transaction T

2

is lost

because of t he wr ite of t he transaction T

1

.

b. Lost update anomaly in read-committed isolation level:

134 Chapter 17 Transactions

T1 T2

lock-S(A)
read(A)
unlock(A)

lock-X(A)
write(A)
unlock(A)
commit

lock-X(A)
read(A)
write(A)
unlock(A)
commit

The locking in t he above schedule ensures t he read-committed isolation

level. The value wr itten by transaction T

2

is lost due to T

1

's wr ite.

c. Lost update anomaly is not possible in repeat able read isolation level.

In repeat able read isolation level, a transaction T

1

reading a dat a item

X holds a shared lock on X till t he end. This makes it impossible for a

newer transaction T

2

to wr ite t he value of X (which requires X-lock) until

T

1

�nishes. This forces t he ser ialization order T

1

, T

2

, and t hus t he value

wr itten by T

2

is not lost.

17.9 Consider a dat abase for a bank where t he dat abase system uses snapshot iso-

lation. Descr ibe a par ticular scenar io in which a nonser ializable execution oc-

cur s t hat would present a problem for t he bank .

Answer :

Suppose t hat t he bank enforces t he integ r it y constraint t hat t he sum of t he

balances in t he checking and t he savings account of a customer must not be

negative. Suppose t he checking and savings balances for a customer are $100

and $200 respectively.

Suppose t hat transaction T

1

wit hdraws $200 from t he checking account

af ter ver ifying t he integ r it y constraint by reading bot h t he balances. Suppose

t hat concur rent transaction T

2

wit hdraws $200 from t he checking account af-

ter ver ifying t he integ r it y constraint by reading bot h t he balances.

Since each of t he transactions check s t he integ r it y constraints on its own

snapshot, if t hey r un concur rently, each will believe t hat t he sum of t he bal-

ances af ter t he wit hdrawal is $100, and t herefore its wit hdrawal does not vio-

late t he integ r it y constraint. Since t he two transactions update di�erent dat a

items, t hey do not have any update con�ict, and under snapshot isolation bot h

Practice Exercises 135

of t hem can commit. This is a nonser ializable execution which results into a

ser ious problem.

17.10 Consider a dat abase for an airline where t he dat abase system uses snapshot

isolation. Descr ibe a par ticular scenar io in which a nonser ializable execution

occur s, but t he airline may be willing to accept it in order to gain better overall

per for mance.

Answer :

Consider a web-based airline reser vation system. There could be many con-

cur rent requests to see t he list of available �ights and available seats in each

�ight and to book tickets. Suppose t here are two user s A and B concur rently

accessing t his web application, and only one seat is lef t on a �ight.

Suppose t hat bot h user A and user B execute transactions to book a seat on

t he �ight and suppose t hat each transaction check s t he tot al number of seats

booked on t he �ight, and inser ts a new booking record if t here are enough seats

lef t. Let T

3

and T

4

be t heir respective booking transactions, which r un concur-

rently. Now T

3

and T

4

will see from t heir snapshots t hat one ticket is available

and will inser t new booking records. Since t he two transactions do not update

any common dat a item (tuple), snapshot isolation allows bot h transactions to

commit. This results in an extra booking, beyond t he number of seats available

on t he �ight.

However, t his situation is usually not ver y ser ious since cancellations of-

ten resolve t he con�ict ; even if t he con�ict is present at t he time t he �ight

is to leave, t he airline can ar range a di�erent �ight for one of t he passenger s

on t he �ight, giving incentives to accept t he change. Using snapshot isolation

improves t he overall per for mance in t his case since t he booking transactions

read t he dat a from t heir snapshots only and do not block ot her concur rent

transactions.

17.11 The de�nition of a schedule assumes t hat operations can be tot ally ordered

by time. Consider a dat abase system t hat r uns on a system wit h multiple pro-

cessor s, where it is not always possible to est ablish an ex act order ing between

operations t hat executed on di�erent processor s. However, operations on a

dat a item can be tot ally ordered.

Does t his situation cause any problem for t he de�nition of con�ict ser ializ-

abilit y? Explain your answer.

Answer :

The given situation will not cause any problem for t he de�nition of con�ict

ser ializabilit y since t he order ing of operations on each dat a item is necessar y

for con�ict ser ializabilit y, whereas t he order ing of operations on di�erent dat a

items is not impor t ant.

136 Chapter 17 Transactions

T1 T2

read(A)

write(B)
read(B)

For t he above schedule to be con�ict ser ializable, t he only order ing require-

ment is read (B) -> wr ite (B). read (A) and read (B) can be in any order.

Therefore, as long as t he operations on a dat a item can be tot ally ordered,

t he de�nition of con�ict ser ializabilit y should hold on t he given multiprocessor

system.

