
C H A P T E R 1 1

Storage and File Structure

Exercises

11.3 Answer: This arrangement has the problem that Pi and B4i−3 are on the same
disk. So if that disk fails, reconstruction of B4i−3 is not possible, since data and
parity are both lost.

11.4 Answer:

a. To ensure atomicity, a block write operation is carried out as follows:-
i. Write the information onto the first physical block.

ii. When the first write completes successfully, write the same information
onto the second physical block.

iii. The output is declared completed only after the second write completes
successfully.

During recovery, each pair of physical blocks is examined. If both are
identical and there is no detectable partial-write, then no further actions
are necessary. If one block has been partially rewritten, then we replace its
contents with the contents of the other block. If there has been no partial-
write, but they differ in content, then we replace the contents of the first
block with the contents of the second, or vice versa. This recovery proce-
dure ensures that a write to stable storage either succeeds completely (that
is, updates both copies) or results in no change.

The requirement of comparing every corresponding pair of blocks dur-
ing recovery is expensive to meet. We can reduce the cost greatly by keep-
ing track of block writes that are in progress, using a small amount of non-
volatile RAM. On recovery, only blocks for which writes were in progress
need to be compared.

61



62 Chapter 11 Storage and File Structure

b. The idea is similar here. For any block write, the information block is writ-
ten first followed by the corresponding parity block. At the time of re-
covery, each set consisting of the nth block of each of the disks is con-
sidered. If none of the blocks in the set have been partially-written, and
the parity block contents are consistent with the contents of the informa-
tion blocks, then no further action need be taken. If any block has been
partially-written, it’s contents are reconstructed using the other blocks. If
no block has been partially-written, but the parity block contents do not
agree with the information block contents, the parity block’s contents are
reconstructed.

11.6 Answer:

a. MRU is preferable to LRU where R1 1 R2 is computed by using a nested-
loop processing strategy where each tuple in R2 must be compared to each
block in R1. After the first tuple of R2 is processed, the next needed block
is the first one in R1. However, since it is the least recently used, the LRU
buffer management strategy would replace that block if a new block was
needed by the system.

b. LRU is preferable to MRU where R1 1 R2 is computed by sorting the rela-
tions by join values and then comparing the values by proceeding through
the relations. Due to duplicate join values, it may be necessary to “back-
up” in one of the relations. This “backing-up” could cross a block bound-
ary into the most recently used block, which would have been replaced by
a system using MRU buffer management, if a new block was needed.

Under MRU, some unused blocks may remain in memory forever. In
practice, MRU can be used only in special situations like that of the nested-
loop strategy discussed in example 0.a

11.7 Answer:

a. Although moving record 6 to the space for 5, and moving record 7 to the
space for 6, is the most straightforward approach, it requires moving the
most records, and involves the most accesses.

b. Moving record 7 to the space for 5 moves fewer records, but destroys any
ordering in the file.

c. Marking the space for 5 as deleted preserves ordering and moves no records,
but requires additional overhead to keep track of all of the free space in the
file. This method may lead to too many “holes” in the file, which if not
compacted from time to time, will affect performance because of reduced
availability of contiguous free records.



Exercises 63

11.8 Answer: (We use “↑ i” to denote a pointer to record “i”.)
The original file of Figure 11.9.

header ↑ 1
record 0 Perryridge A-102 400
record 1 ↑ 4
record 2 Mianus A-215 700
record 3 Downtown A-101 500
record 4 ↑ 6
record 5 Perryridge A-201 900
record 6
record 7 Downtown A-110 600
record 8 Perryridge A-218 700

a. The file after insert (Brighton, A-323, 1600).

header ↑ 4
record 0 Perryridge A-102 400
record 1 Brighton A-323 1600
record 2 Mianus A-215 700
record 3 Downtown A-101 500
record 4 ↑ 6
record 5 Perryridge A-201 900
record 6
record 7 Downtown A-110 600
record 8 Perryridge A-218 700

b. The file after delete record 2.

header ↑ 2
record 0 Perryridge A-102 400
record 1 Brighton A-323 1600
record 2 ↑ 4
record 3 Downtown A-101 500
record 4 ↑ 6
record 5 Perryridge A-201 900
record 6
record 7 Downtown A-110 600
record 8 Perryridge A-218 700

The free record chain could have alternatively been from the header to
4, from 4 to 2, and finally from 2 to 6.



64 Chapter 11 Storage and File Structure

c. The file after insert (Brighton, A-626, 2000).
header ↑ 4
record 0 Perryridge A-102 400
record 1 Brighton A-323 1600
record 2 Brighton A-626 2000
record 3 Downtown A-101 500
record 4 ↑ 6
record 5 Perryridge A-201 900
record 6
record 7 Downtown A-110 600
record 8 Perryridge A-218 700

11.11 Answer:

a. insert (Mianus, A-101, 2800) changes record 2 to:

2 Mianus A-215 700 A-101 2800 ⊥ ⊥
b. insert (Brighton, A-323, 1600) changes record 5 to:

5 Brighton A-216 750 A-323 1600 ⊥ ⊥
c. delete (Perryridge, A-102, 400) changes record 0 to:

0 Perryridge A-102 900 A-218 700 ⊥ ⊥

11.13 Answer:

a. The figure after insert (Mianus, A-101, 2800).

0 ↑ 5 Perryridge A-102 400
1 Round Hill A-305 350
2 ↑ 9 Mianus A-215 700
3 ↑ 7 Downtown A-101 500
4 Redwood A-222 700
5 ↑ 8 A-201 900
6 Brighton A-216 750
7 A-110 600
8 A-218 700
9 A-101 2800



Exercises 65

b. The figure after insert (Brighton, A-323, 1600).
0 ↑ 5 Perryridge A-102 400
1 Round Hill A-305 350
2 ↑ 9 Mianus A-215 700
3 ↑ 7 Downtown A-101 500
4 Redwood A-222 700
5 ↑ 8 A-201 900
6 ↑ 10 Brighton A-216 750
7 A-110 600
8 A-218 700
9 A-101 2800
10 A-323 1600

c. The figure after delete (Perryridge, A-102, 400).

1 Round Hill A-305 350
2 ↑ 9 Mianus A-215 700
3 ↑ 7 Downtown A-101 500
4 Redwood A-222 700
5 ↑ 8 Perryridge A-201 900
6 ↑ 10 Brighton A-216 750
7 A-110 600
8 A-218 700
9 A-101 2800
10 A-323 1600

11.18 Answer:

course relation
course-name room instructor

Pascal CS-101 Calvin, B c1

C CS-102 Calvin, B c2

LISP CS-102 Kess, J c3



66 Chapter 11 Storage and File Structure

enrollment relation
course-name student-name grade

Pascal Carper, D A e1

Pascal Merrick, L A e2

Pascal Mitchell, N B e3

Pascal Bliss, A C e4

Pascal Hames, G C e5

C Nile, M A e6

C Mitchell, N B e7

C Carper, D A e8

C Hurly, I B e9

C Hames, G A e10

Lisp Bliss, A C e11

Lisp Hurly, I B e12

Lisp Nile, M D e13

Lisp Stars, R A e14

Lisp Carper, D A e15

Block 0 contains: c1, e1, e2, e3, e4, and e5

Block 1 contains: c2, e6, e7, e8, e9 and e10

Block 2 contains: c3, e11, e12, e13, e14, and e15

11.19 Answer:

a. Everytime a record is inserted/deleted, check if the usage of the block has
changed levels. In that case, update the corrosponding bits. Note that we
don’t need to access the bitmaps at all unless the usage crosses a boundary,
so in most of the cases there is no overhead.

b. When free space for a large record or a set of records is sought, then mul-
tiple free list entries may have to be scanned before finding a proper sized
one, so overheads are much higher. With bitmaps, one page of bitmap can
store free info for many pages, so IO spent for finding free space is mini-
mal. Similarly, when a whole block or a large part of it is deleted, bitmap
technique is more convenient for updating free space information.

11.22 Answer:
If an object gets forwarded multiple times, the retrieval speed will decrease

because accessing it will require accessing the series of locations from which
the object has been successively forwarded to the current location.

To avoid multiple accesses, whenever an object is accessed using an old
pointer, update each pointer in the path to point to the current location of
the object. With this path compression, whenever the object is accessed again
through any pointer in that path, the object can be directly reached.

11.24 Answer: While swizzling, if the short identifier of page 679.34278 is changed
from 2395 to 5001, it is either because



Exercises 67

a. the system discovers that 679.34278 has already been allocated the virtual-
memory page 5001 in some previous step, or else

b. 679.34278 has not been allocated any virtual memory page so far, and the
free virtual memory page 5001 is now allocated to it.

Thus in either case, it cannot be true that the current page already uses the
same short identifier 5001 to refer to some database page other than 679.34278.
Some other page may use 5001 to refer to a different database page, but then
each page has its own independent mapping from short to full page identifiers,
so this is all right.

Note that if we do swizzling as described in the text, and different processes
need simultaneous access to a database page, they will have to map separate
copies of the page to their individual virtual address spaces. Extensions to the
scheme are possible to avoid this.


