
C H A P T E R 1 2

Indexing and Hashing

Exercises

12.2 Answer: Reasons for not keeping several search indices include:
a. Every index requires additional CPU time and disk I/O overhead during

inserts and deletions.
b. Indices on non-primary keys might have to be changed on updates, al-

though an index on the primary key might not (this is because updates
typically do not modify the primary key attributes).

c. Each extra index requires additional storage space.
d. For queries which involve conditions on several search keys, efficiency

might not be bad even if only some of the keys have indices on them.
Therefore database performance is improved less by adding indices when
many indices already exist.

12.4 Answer: In general, it is not possible to have two primary indices on the same
relation for different keys because the tuples in a relation would have to be
stored in different order to have same values stored together. We could accom-
plish this by storing the relation twice and duplicating all values, but for a
centralized system, this is not efficient.

12.5 Answer: The following were generated by inserting values into the B+-tree in
ascending order. A node (other than the root) was never allowed to have fewer
than �n/2� values/pointers.

a.

2 3 5 7 29 3117

29

11 19 23

19

5 11

69



70 Chapter 12 Indexing and Hashing

b.

19 31292317117532

197

c.

1132

11

5 7 17 19 23 29 31

12.7 Answer:

• With structure 12.5.a:
Insert 9:

2 3 5 7 29 3117

29

11 19 23

19

5 11

9

Insert 10:

9

9

102 3

29

19

5 11

5 7 1711 19 23 29 31

Insert 8:

8 9

9

102 3

29

19

5 11

5 7 1711 19 23 29 31

Delete 23:

9 19108

9

11

2 3 5 7 29 311711

195

Delete 19:



Exercises 71

29

29

9 108

9

11

2 3 5 7 311711

5

• With structure 12.5.b:
Insert 9:

9 19 31292317117532

197

Insert 10:

109 19 31292317117532

197

Insert 8:

8532 97 10 1711 19 312923

197 10

Delete 23:

8532 97 10 1711 19 3129

197 10

Delete 19:

7 10

8532 97 10 1711 3129

• With structure 12.5.c:
Insert 9:

9 1732 11

11

5 7 19 23 29 31

Insert 10:



72 Chapter 12 Indexing and Hashing

109 1732 11

11

5 7 19 23 29 31

Insert 8:

8 109 1732 11

11

5 7 19 23 29 31

Delete 23:

8 109 1732 11

11

5 7 19 29 31

Delete 19:

8 109 1732 11

11

5 7 29 31

12.8 Answer: If there are K search-key values and m − 1 siblings are involved in
the redistribution, the expected height of the tree is: log�(m−1)n/m�(K)

12.9 Answer: The algorithm for insertion into a B-tree is:
Locate the leaf node into which the new key-pointer pair should be inserted.

If there is space remaining in that leaf node, perform the insertion at the correct
location, and the task is over. Otherwise insert the key-pointer pair conceptu-
ally into the correct location in the leaf node, and then split it along the middle.
The middle key-pointer pair does not go into either of the resultant nodes of
the split operation. Instead it is inserted into the parent node, along with the
tree pointer to the new child. If there is no space in the parent, a similar proce-
dure is repeated.

The deletion algorithm is:
Locate the key value to be deleted, in the B-tree.

a. If it is found in a leaf node, delete the key-pointer pair, and the record
from the file. If the leaf node contains less than �n/2�− 1 entries as a result
of this deletion, it is either merged with its siblings, or some entries are
redistributed to it. Merging would imply a deletion, whereas redistribution
would imply change(s) in the parent node’s entries. The deletions may
ripple upto the root of the B-tree.

b. If the key value is found in an internal node of the B-tree, replace it and
its record pointer by the smallest key value in the subtree immediately to
its right and the corresponding record pointer. Delete the actual record in
the database file. Then delete that smallest key value-pointer pair from the



Exercises 73

subtree. This deletion may cause further rippling deletions till the root of
the B-tree.

Below are the B-trees we will get after insertion of the given key values.
We assume that leaf and non-leaf nodes hold the same number of search key
values.

a.

? ? ? ?

? ?

? ? ?

?
�������9

�
��+

Z
ZZ~

XXXXXXz

5

2 3 7 23 31

17

11 19

29

b.

�
�

�
�
��

XXXXXXXXXXz

?

?

?

7 23

17

?

19

?

31

?

29

?

11

?

5

?

3

?

2

?

c.

2 3 5 7

11

17 19 23 29 31

12.12 Answer:



74 Chapter 12 Indexing and Hashing

3

3

29

5

19

11

3

2

111

110

101

100

011

010

001

000

3

2

2

31

23

7

17

2

12.13 Answer:

a. Delete 11: From the answer to Exercise 12.12, change the third bucket to:

3

3

19

At this stage, it is possible to coalesce the second and third buckets. Then it
is enough if the bucket address table has just four entries instead of eight.
For the purpose of this answer, we do not do the coalescing.

b. Delete 31: From the answer to 12.12, change the last bucket to:

2

23

7

c. Insert 1: From the answer to 12.12, change the first bucket to:

1

17

2



Exercises 75

d. Insert 15: From the answer to 12.12, change the last bucket to:

15

2

23

7

12.14 Answer: Let i denote the number of bits of the hash value used in the hash
table. Let BSIZE denote the maximum capacity of each bucket.

delete(value Kl)
begin

j = first i high-order bits of h(Kl);
delete value Kl from bucket j;
coalesce(bucket j);

end

coalesce(bucket j)
begin

ij = bits used in bucket j;
k = any bucket with first (ij − 1) bits same as that

of bucket j while the bit ij is reversed;
ik = bits used in bucket k;
if(ij �= ik)

return; /* buckets cannot be merged */
if(entries in j + entries in k > BSIZE)

return; /* buckets cannot be merged */
move entries of bucket k into bucket j;

decrease the value of ij by 1;
make all the bucket-address-table entries,
which pointed to bucket k, point to j;

coalesce(bucket j);
end

Note that we can only merge two buckets at a time. The common hash prefix
of the resultant bucket will have length one less than the two buckets merged.
Hence we look at the buddy bucket of bucket j differing from it only at the last
bit. If the common hash prefix of this bucket is not ij , then this implies that the
buddy bucket has been further split and merge is not possible.



76 Chapter 12 Indexing and Hashing

When merge is successful, further merging may be possible, which is han-
dled by a recursive call to coalesce at the end of the function.

12.15 Answer: If the hash table is currently using i bits of the hash value, then main-
tain a count of buckets for which the length of common hash prefix is exactly
i.

Consider a bucket j with length of common hash prefix ij . If the bucket is
being split, and ij is equal to i, then reset the count to 1. If the bucket is being
split and ij is one less that i, then increase the count by 1. It the bucket if being
coalesced, and ij is equal to i then decrease the count by 1. If the count becomes
0, then the bucket address table can be reduced in size at that point.

However, note that if the bucket address table is not reduced at that point,
then the count has no significance afterwards. If we want to postpone the re-
duction, we have to keep an array of counts, i.e. a count for each value of com-
mon hash prefix. The array has to be updated in a similar fashion. The bucket
address table can be reduced if the ith entry of the array is 0, where i is the
number of bits the table is using. Since bucket table reduction is an expensive
operation, it is not always advisable to reduce the table. It should be reduced
only when sufficient number of entries at the end of count array become 0.

12.18 Answer: We reproduce the account relation of Figure 12.25 below.

A-217 Brighton 750
A-101 Downtown 500
A-1 10 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700
A-222 Redwood 700
A-305 Round Hill 350

Bitmaps for branch-name
Brighton 1 0 0 0 0 0 0 0 0
Downtown 0 1 1 0 0 0 0 0 0
Mianus 0 0 0 1 0 0 0 0 0
Perryridge 0 0 0 0 1 1 1 0 0
Redwood 0 0 0 0 0 0 0 1 0
Round hill 0 0 0 0 0 0 0 0 1

Bitmaps for balance



Exercises 77

L1 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 1 0 0 0 1
L3 0 1 1 1 0 0 1 1 0
L4 1 0 0 0 0 1 0 0 0

where, level L1 is below 250, level L2 is from 250 to below 500, L3 from 500
to below 750 and level L4 is above 750.

To find all accounts in Downtown with a balance of 500 or more, we find the
union of bitmaps for levels L3 and L4 and then intersect it with the bitmap for
Downtown.

Downtown 0 1 1 0 0 0 0 0 0
L3 0 1 1 1 0 0 1 1 0
L4 1 0 0 0 0 1 0 0 0
L3 ∪ L4 1 1 1 1 0 1 1 1 0
Downtown 0 1 1 0 0 0 0 0 0
Downtown ∩(L3 ∪ L4) 0 1 1 0 0 0 0 0 0

Thus, the required tuples are A-101 and A-110.


