
C H A P T E R 1 5

Transactions

Exercises

15.2 Answer: Even in this case the recovery manager is needed to perform roll-back
of aborted transactions.

15.3 Answer: There are several steps in the creation of a file. A storage area is
assigned to the file in the file system, a unique i-number is given to the file
and an i-node entry is inserted into the i-list. Deletion of file involves exactly
opposite steps.

For the file system user in UNIX, durability is important for obvious rea-
sons, but atomicity is not relevant generally as the file system doesn’t support
transactions. To the file system implementor though, many of the internal file
system actions need to have transaction semantics. All the steps involved in
creation/deletion of the file must be atomic, otherwise there will be unrefer-
enceable files or unusable areas in the file system.

15.4 Answer: Database systems usually perform crucial tasks whose effects need to
be atomic and durable, and whose outcome affects the real world in a perma-
nent manner. Examples of such tasks are monetary transactions, seat bookings
etc. Hence the ACID properties have to be ensured. In contrast, most users of
file systems would not be willing to pay the price (monetary, disk space, time)
of supporting ACID properties.

15.6 Answer: If a transaction is very long or when it fetches data from a slow disk,
it takes a long time to complete. In absence of concurrency, other transactions
will have to wait for longer period of time. Average responce time will increase.
Also when the transaction is reading data from disk, CPU is idle. So resources
are not properly utilized. Hence concurrent execution becomes important in
this case. However, when the transactions are short or the data is available in
memory, these problems do not occur.

89



90 Chapter 15 Transactions

15.9 Answer: Most of the concurrency control protocols (protocols for ensuring
that only serializable schedules are generated) used in practise are based on
conflict serializability—they actually permit only a subset of conflict serializ-
able schedules. The general form of view serializability is very expensive to
test, and only a very restricted form of it is used for concurrency control.

15.10 Answer: There is a serializable schedule corresponding to the precedence
graph below, since the graph is acyclic. A possible schedule is obtained by
doing a topological sort, that is, T1, T2, T3, T4, T5.

T4

T2

T5

T1

T3

15.12 Answer: A cascadeless schedule is one where, for each pair of transactions
Ti and Tj such that Tj reads data items previously written by Ti, the commit
operation of Ti appears before the read operation of Tj . Cascadeless schedules
are desirable because the failure of a transaction does not lead to the aborting
of any other transaction. Of course this comes at the cost of less concurrency.
If failures occur rarely, so that we can pay the price of cascading aborts for the
increased concurrency, noncascadeless schedules might be desirable.


