
C H A P T E R 2 4

Advanced Transaction Processing

Exercises

24.4 Answer:

a. The tasks in a workflow have dependencies based on their status. For ex-
ample the starting of a task may be conditional on the outcome (such as
commit or abort) of some other task. All the tasks cannot execute indepen-
dently and concurrently, using 2PC just for atomic commit.

b. Once a task gets over, it will have to expose its updates, so that other tasks
running on the same processing entity don’t have to wait for long. 2PL is
too strict a form of concurrency control, and is not appropriate for work-
flows.

c. Workflows have their own consistency requirements, i.e. failure-atomicity.
An execution of a workflow must finish in an acceptable termination state.
Because of this, and because of early exposure of uncommitted updates,
the recovery procedure will be quite different. Some form of logical log-
ging and compensation transactions will have to be used. Also to perform
forward recovery of a failed workflow, the recovery routines need to re-
store the state information of the scheduler and tasks, not just the updated
data items. Thus simple WAL cannot be used.

24.6 Answer:

• Loading the entire database into memory in advance can provide trans-
actions which need high-speed or realtime data access the guarantee that
once they start they will not have to wait for disk accesses to fetch data.
However no transaction can run till the entire database is loaded.

• The advantage in loading on demand is that transaction processing can
start rightaway; however transactions may see long and unpredictable de-
lays in disk access until the entire database is loaded into memory.

123



124 Chapter 24 Advanced Transaction Processing

24.8 Answer: A high-performance system is not necessarily a real-time system.
In a high performance system, the main aim is to execute each transaction as
quickly as possible, by having more resources and better utilization. Thus aver-
age speed and response time are the main things to be optimized. In a real-time
system, speed is not the central issue. Here each transaction has a deadline, and
taking care that it finishes within the deadline or takes as little extra time as
possible, is the critical issue.

24.10 Answer: In the presence of long-duration transactions, trying to ensure serial-
izability has several drawbacks:-

a. With a waiting scheme for concurrency control, long-duration transactions
will force long waiting times. This means that response time will be high,
concurrency will be low, so throughput will suffer. The probability of dead-
locks is also increased.

b. With a time-stamp based scheme, a lot of work done by a long-running
transaction will be wasted if it has to abort.

c. Long duration transactions are usually interactive in nature, and it is very
difficult to enforce serializability with interactiveness.

Thus the serializability requirement is impractical. Some other notion of database
consistency has to be used in order to support long duration transactions.

24.11 Answer: Each thread can be modeled as a transaction T which takes a mes-
sage from the queue and delivers it. We can write transaction T as a multilevel
transaction with subtransactions T1 and T2. Subtransaction T1 removes a mes-
sage from the queue and subtransaction T2 delivers it. Each subtransaction re-
leases locks once it completes, allowing other transactions to access the queue.
If transaction T2 fails to deliver the message, transaction T1 will be undone
by invoking a compensating transaction which will restore the message to the
queue.

24.12 Answer:

• The advanced recovery algorithm of Section 17.9 :-
The redo pass, which repeats history, is the same as before. We discuss

below how the undo pass is handled.
Recovery with nested transactions:

Each subtransaction needs to have a unique TID, because a failed
subtransaction might have to be independently rolled back and restarted.

If a subtransaction fails, the recovery actions depend on whether the
unfinished upper-level transaction should be aborted or continued. If it
should be aborted, all finished and unfinished subtransactions are un-
done by a backward scan of the log (this is possible because the locks
on the modified data items are not released as soon as a subtransac-
tion finishes). If the nested transaction is going to be continued, just
the failed transaction is undone, and then the upper-level transaction
continues.



Exercises 125

In the case of a system failure, depending on the application, the en-
tire nested-transaction may need to be aborted, or, (for e.g., in the case
of long duration transactions) incomplete subtransactions aborted, and
the nested transaction resumed. If the nested-transaction must be abort-
ed, the rollback can be done in the usual manner by the recovery algo-
rithm, during the undo pass. If the nested-transaction must be restarted,
any incomplete subtransactions that need to be rolled back can be rolled
back as above. To restart the nested-transaction, state information about
the transaction, such as locks held and execution state, must have been
noted on the log, and must restored during recovery. Mini-batch trans-
actions (discussed in Section 21.2.7) are an example of nested transac-
tions that must be restarted.

Recovery with multi-level transactions:
In addition to what is done in the previous case, we have to handle

the problems caused by exposure of updates performed by committed
subtransactions of incomplete upper-level transactions. A committed
subtransaction may have released locks that it held, so the compen-
sating transaction has to reacquire the locks. This is straightforward in
the case of transaction failure, but is more complicated in the case of
system failure.

The problem is, a lower level subtransaction a of a higher level trans-
action A may have released locks, which have to be reacquired to com-
pensate A during recovery. Unfortunately, there may be some other
lower level subtransaction b of a higher level transaction B that started
and acquired the locks released by a, before the end of A. Thus undo
records for b may precede the operation commit record for A. But if b
had not finished at the time of the system failure, it must first be rolled
back and its locks released, to allow the compensating transaction of A
to reacquire the locks.

This complicates the undo pass; it can no longer be done in one
backward scan of the log. Multilevel recovery is described in detail in
David Lomet, “MLR: A Recovery Method for Multi-Level Systems”,
ACM SIGMOD Conf. on the Management of Data 1992, San Diego.

• Recovery in a shadow paging scheme :-
In a shadow paging based scheme, the implementation will become

very complicated if the subtransactions are to be executed concurrently. If
they are to execute serially, the current page table is copied to the shadow
page table at the end of every subtransaction. The general idea of recovery
then is alike to the logging based scheme, except that undoing and redoing
become much easier, as in Section 17.5.

24.14 Answer:

a. We can have a special data item at some site on which a lock will have
to be obtained before starting a global transaction. The lock should be re-
leased after the transaction completes. This ensures the single active global
transaction requirement. To reduce dependency on that particular site be-



126 Chapter 24 Advanced Transaction Processing

ing up, we can generalize the solution by having an election scheme to
choose one of the currently up sites to be the co-ordinator, and requiring
that the lock be requested on the data item which resides on the currently
elected co-ordinator.

b. The following schedule involves two sites and four transactions. T1 and T2

are local transactions, running at site 1 and site 2 respectively. TG1 and TG2

are global transactions running at both sites. X1, Y1 are data items at site 1,
and X2, Y2 are at site 2.

T1 T2 TG1 TG2

write(Y1)
read(Y1)
write(X2)

read(X2)
write(Y2)

read(Y2)
write(X1)

read(X1)

In this schedule, TG2 starts only after TG1 finishes. Within each site, there
is local serializability. In site 1, TG2 → T1 → TG1 is a serializability order.
In site 2, TG1 → T2 → TG2 is a serializability order. Yet the global schedule
schedule is non-serializable.

24.15 Answer:

a. The same system as in the answer to Exercise 24.14 is assumed, except
that now both the global transactions are read-only. Consider the schedule
given below.

T1 T2 TG1 TG2

read(X1)
write(X1)

read(X1)
read(X2)

write(X2)
read(X2)

Though there is local serializability in both sites, the global schedule is
not serializable.

b. Since local serializability is guaranteed, any cycle in the system wide prece-
dence graph must involve at least two different sites, and two different
global transactions. The ticket scheme ensures that whenever two global
transactions access data at a site, they conflict on a data item (the ticket)
at that site. The global transaction manager controls ticket access in such
a manner that the global transactions execute with the same serializability
order in all the sites. Thus the chance of their participating in a cycle in the
system wide precedence graph is eliminated.


