
C H A P T E R 6

Integrity and Security

Exercises

6.1 Answer:

create table loan
(loan-number char(10),
branch-name char(15),
amount integer,
primary key (loan-number),
foreign key (branch-name) references branch)

create table borrower
(customer-name char(20),
loan-number char(10),
primary key (customer-name, loan-number),
foreign key (customer-name) references customer,
foreign key (loan-number) references loan)

Declaring the pair customer-name, loan-number of relation borrower as primary
key ensures that the relation does not contain duplicates.

6.2 Answer:

33

34 Chapter 6 Integrity and Security

create table employee
(person-name char(20),
street char(30),
city char(30),
primary key (person-name))

create table works
(person-name char(20),
company-name char(15),
salary integer,
primary key (person-name),
foreign key (person-name) references employee,
foreign key (company-name) references company)

create table company
(company-name char(15),
city char(30),
primary key (company-name))

create table manages
(person-name char(20),
manager-name char(20),
primary key (person-name),
foreign key (person-name) references employee,
foreign key (manager-name) references employee)

Note that alternative datatypes are possible.

6.4 Answer: The tuples of all employees of the manager, at all levels, get deleted as
well! This happens in a series of steps. The initial deletion will trigger deletion of
all the tuples corresponding to direct employees of the manager. These deletions
will in turn cause deletions of second level employee tuples, and so on, till all
direct and indirect employee tuples are deleted.

6.6 Answer: The assertion-name is arbitrary. We have chosen the name perry. Note
that since the assertion applies only to the Perryridge branch we must restrict
attention to only the Perryridge tuple of the branch relation rather than writing
a constraint on the entire relation.

create assertion perry check
(not exists (select *

from branch
where branch-name = ’Perryridge’ and

assets �= (select sum (amount)
from loan
where branch-name = ’Perryridge’)))

Exercises 35

6.7 Answer:

create trigger check-delete-trigger after delete on account
referencing old row as orow
for each row
delete from depositor
where depositor.customer-name not in

(select customer-name from depositor
where account-number <> orow.account-number)

end

6.8 Answer: For inserting into the materialized view branch-cust we must set a
database trigger on an insert into depositor and account. We assume that the
database system uses immediate binding for rule execution. Further, assume that
the current version of a relation is denoted by the relation name itself, while the
set of newly inserted tuples is denoted by qualifying the relation name with the
prefix – inserted.

The active rules for this insertion are given below –

define trigger insert into branch-cust via depositor
after insert on depositor
referencing new table as inserted for each statement
insert into branch-cust

select branch-name, customer-name
from inserted, account
where inserted.account-number = account.account-number

define trigger insert into branch-cust via account
after insert on account
referencing new table as inserted for each statement
insert into branch-cust

select branch-name, customer-name
from depositor, inserted
where depositor.account-number = inserted.account-number

Note that if the execution binding was deferred (instead of immediate), then
the result of the join of the set of new tuples of account with the set of new tuples
of depositor would have been inserted by both active rules, leading to duplication
of the corresponding tuples in branch-cust.

The deletion of a tuple from branch-cust is similar to insertion, except that
a deletion from either depositor or account will cause the natural join of these
relations to have a lesser number of tuples. We denote the newly deleted set of
tuples by qualifying the relation name with the keyword deleted.

36 Chapter 6 Integrity and Security

define trigger delete from branch-cust via depositor
after delete on depositor
referencing old table as deleted for each statement
delete from branch-cust

select branch-name, customer-name
from deleted, account
where deleted.account-number = account.account-number

define trigger delete from branch-cust via account
after delete on account
referencing old table as deleted for each statement
delete from branch-cust

select branch-name, customer-name
from depositor, deleted
where depositor.account-number = deleted.account-number

6.12 Answer: Usually, a well-designed view and security mechanism can avoid con-
flicts between ease of access and security. However, as the following example
shows, the two purposes do conflict in case the mechanisms are not designed
carefully.

Suppose we have a database of employee data and a user whose view in-
volves employee data for employees earning less than $10,000. If this user in-
serts employee Jones, whose salary is $9,000, but accidentally enters $90,000,
several existing database systems will accept this update as a valid update through
a view. However, the user will be denied access to delete this erroneous tuple
by the security mechanism.

6.16 Answer: A scheme for storing passwords would be to encrypt each password.
The user-id can be used to access the encrypted password. An index can be used
if the number of users is very large. The password being used in a login attempt
is then encrypted and compared with the stored encryption of the correct pass-
word. An advantage of this scheme is that passwords are not stored in clear text
and the code for decryption need not even exist.

