
C H A P T E R 7

Relational-Database Design

Exercises

7.2 Answer: A decomposition {R1, R2} is a lossless-join decomposition if R1 ∩
R2 → R1 or R1 ∩ R2 → R2. Let R1 = (A, B, C), R2 = (A, D, E), andR1 ∩
R2 = A. Since A is a candidate key (see Exercise 7.11), Therefore R1 ∩ R2 →
R1.

7.4 Answer: The nontrivial functional dependencies are: A → B and C → B,
and a dependency they logically imply: AC → B. There are 19 trivial func-
tional dependencies of the form α → β, where β ⊆ α. C does not functionally
determine A because the first and third tuples have the same C but different A
values. The same tuples also show B does not functionally determine A. Like-
wise, A does not functionally determine C because the first two tuples have the
same A value and different C values. The same tuples also show B does not
functionally determine C.

7.6 Answer: Let Pk(r) denote the primary key attribute of relation r.
• The functional dependencies Pk(account) → Pk (customer) and Pk(customer)
→ Pk(account) indicate a one-to-one relationship because any two tuples
with the same value for account must have the same value for customer,
and any two tuples agreeing on customer must have the same value for
account.

• The functional dependency Pk(account) → Pk(customer) indicates a many-
to-one relationship since any account value which is repeated will have the
same customer value, but many account values may have the same cus-
tomer value.

7.8 Answer: To prove that:

if α → β and α → γ then α → βγ

37



38 Chapter 7 Relational-Database Design

Following the hint, we derive:
α → β given
αα → αβ augmentation rule
α → αβ union of identical sets
α → γ given
αβ → γ β augmentation rule
α → βγ transitivity rule and set union commutativity

7.10 Answer: Proof using Armstrong’s axioms of the Pseudotransitivity Rule:
if α → β and γ β → δ, then αγ → δ.

α → β given
αγ → γ β augmentation rule and set union commutativity
γ β → δ given
αγ → δ transitivity rule

7.11 Answer: Compute the closure of the following set F of functional dependencies
for relation schema R = (A, B, C, D, E).

A → BC
CD → E
B → D
E → A

List the candidate keys for R.
Note: It is not reasonable to expect students to enumerate all of F+. Some short-
hand representation of the result should be acceptable as long as the nontrivial
members of F+ are found.

Starting with A → BC, we can conclude: A → B and A → C.

Since A → B and B → D, A → D (decomposition, transitive)
Since A → CD and CD → E, A → E (union, decomposition, transitive)
Since A → A, we have (reflexive)
A → ABCDE from the above steps (union)
Since E → A, E → ABCDE (transitive)
Since CD → E, CD → ABCDE (transitive)
Since B → D and BC → CD, BC → ABCDE (augmentative, transitive)
Also, C → C, D → D, BD → D, etc.

Therefore, any functional dependency with A, E, BC, or CD on the left hand
side of the arrow is in F+, no matter which other attributes appear in the FD.
Allow * to represent any set of attributes in R, then F+ is BD → B, BD → D,
C → C, D → D, BD → BD, B → D, B → B, B → BD, and all FDs of
the form A ∗ → α, BC ∗ → α, CD ∗ → α, E ∗ → α where α is any subset of
{A, B, C, D, E}. The candidate keys are A, BC, CD, and E.

7.13 Answer: The given set of FDs F is:-



Exercises 39

A → BC
CD → E
B → D
E → A

The left side of each FD in F is unique. Also none of the attributes in the left
side or right side of any of the FDs is extraneous. Therefore the canonical cover
Fc is equal to F .

7.14 Answer: The algorithm is correct because:
• If A is added to result then there is a proof that α → A. To see this, observe

that α → α trivially so α is correctly part of result. If A �∈ α is added to
result there must be some FD β → γ such that A ∈ γ and β is already a
subset of result. (Otherwise fdcount would be nonzero and the if condition
would be false.) A full proof can be given by induction on the depth of
recursion for an execution of addin, but such a proof can be expected only
from students with a good mathematical background.

• If A ∈ α+, then A is eventually added to result. We prove this by induction
on the length of the proof of α → A using Armstrong’s axioms. First observe
that if procedure addin is called with some argument β, all the attributes in
β will be added to result. Also if a particular FD’s fdcount becomes 0, all
the attributes in its tail will definitely be added to result. The base case of
the proof, A ∈ α ⇒ A ∈ α+, is obviously true because the first call to
addin has the argument α. The inductive hypotheses is that if α → A can
be proved in n steps or less then A ∈ result. If there is a proof in n + 1
steps that α → A, then the last step was an application of either reflexivity,
augmentation or transitivity on a fact α → β proved in n or fewer steps.
If reflexivity or augmentation was used in the (n + 1)st step, A must have
been in result by the end of the nth step itself. Otherwise, by the inductive
hypothesis β ⊆ result. Therefore the dependency used in proving β → γ,
A ∈ γ will have fdcount set to 0 by the end of the nth step. Hence A will
be added to result.

To see that this algorithm is more efficient than the one presented in the chap-
ter note that we scan each FD once in the main program. The resulting array
appears has size proportional to the size of the given FDs. The recursive calls to
addin result in processing linear in the size of appears. Hence the algorithm has
time complexity which is linear in the size of the given FDs. On the other hand,
the algorithm given in the text has quadratic time complexity, as it may perform
the loop as many times as the number of FDs, in each loop scanning all of them
once.

7.15 Answer:

a. The query is given below. Its result is non-empty if and only if b → c does
not hold on r.



40 Chapter 7 Relational-Database Design

select b
from r
group by b
having count(distinct c) > 1

b.

create assertion b-to-c check
(not exists

(select b
from r
group by b
having count(distinct c) > 1

)
)

7.17 Answer: Consider some tuple t in u.
Note that ri = ΠRi(u) implies that t[Ri] ∈ ri, 1 ≤ i ≤ n. Thus,

t[R1] 1 t[R2] 1 . . . 1 t[Rn] ∈ r1 1 r2 1 . . . 1 rn

By the definition of natural join,

t[R1] 1 t[R2] 1 . . . 1 t[Rn] = Πα (σβ (t[R1] × t[R2] × . . . × t[Rn]))

where the condition β is satisfied if values of attributes with the same name
in a tuple are equal and where α = U . The cartesian product of single tuples
generates one tuple. The selection process is satisfied because all attributes with
the same name must have the same value since they are projections from the
same tuple. Finally, the projection clause removes duplicate attribute names.

By the definition of decomposition, U = R1∪R2∪ . . .∪Rn, which means that
all attributes of t are in t[R1] 1 t[R2] 1 . . . 1 t[Rn]. That is, t is equal to the result
of this join.

Since t is any arbitrary tuple in u,

u ⊆ r1 1 r2 1 . . . 1 rn

7.18 Answer: The dependency B → D is not preserved. F1, the restriction of F to
(A, B, C) is A → ABC, A → AB, A → AC, A → BC, A → B, A → C,
A → A, B → B, C → C, AB → AC, AB → ABC, AB → BC, AB → AB,
AB → A, AB → B, AB → C, AC (same as AB), BC (same as AB), ABC
(same as AB). F2, the restriction of F to (C, D, E) is A → ADE, A → AD,
A → AE, A → DE, A → A, A → D, A → E, D → D, E (same as A), AD,
AE, DE, ADE (same as A). (F1 ∪ F2)+ is easily seen not to contain B → D
since the only FD in F1 ∪ F2 with B as the left side is B → B, a trivial FD. We
shall see in Exercise 7.22 that B → D is indeed in F+. Thus B → D is not
preserved. Note that CD → ABCDE is also not preserved.



Exercises 41

A simpler argument is as follows: F1 contains no dependencies with D on the
right side of the arrow. F2 contains no dependencies with B on the left side of
the arrow. Therefore for B → D to be preserved there must be an FD B → α
in F+

1 and α → D in F+
2 (so B → D would follow by transitivity). Since the

intersection of the two schemes is A, α = A. Observe that B → A is not in F+
1

since B+ = BD.

7.19 Answer: Let F be a set of functional dependencies that hold on a schema R. Let
σ = {R1, R2, . . . , Rn} be a dependency-preserving 3NF decomposition of R. Let
X be a candidate key for R.

Consider a legal instance r of R. Let j = ΠX(r) 1 ΠR1(r) 1 ΠR2(r) . . . 1
ΠRn(r). We want to prove that r = j.

We claim that if t1 and t2 are two tuples in j such that t1[X ] = t2[X ], then
t1 = t2. To prove this claim, we use the following inductive argument –
Let F ′ = F1 ∪ F2 ∪ . . . ∪ Fn, where each Fi is the restriction of F to the schema
Ri in σ. Consider the use of the algorithm given in Figure 7.7 to compute the
closure of X under F ′. We use induction on the number of times that the for
loop in this algorithm is executed.
• Basis : In the first step of the algorithm, result is assigned to X , and hence

given that t1[X ] = t2[X ], we know that t1[result] = t2[result] is true.
• Induction Step : Let t1[result] = t2[result] be true at the end of the k th exe-

cution of the for loop.
Suppose the functional dependency considered in the k + 1 th execution
of the for loop is β → γ, and that β ⊆ result. β ⊆ result implies that
t1[β] = t2[β] is true. The facts that β → γ holds for some attribute set Ri

in σ, and that t1[Ri] and t2[Ri] are in ΠRi(r) imply that t1[γ] = t2[γ] is
also true. Since γ is now added to result by the algorithm, we know that
t1[result] = t2[result] is true at the end of the k + 1 th execution of the for
loop.

Since σ is dependency-preserving and X is a key for R, all attributes in R are in
result when the algorithm terminates. Thus, t1[R] = t2[R] is true, that is, t1 = t2
– as claimed earlier.

Our claim implies that the size of ΠX(j) is equal to the size of j. Note also
that ΠX(j) = ΠX(r) = r (since X is a key for R). Thus we have proved that the
size of j equals that of r. Using the result of Exercise 7.17, we know that r ⊆ j.
Hence we conclude that r = j.

Note that since X is trivially in 3NF, σ ∪ {X} is a dependency-preserving
lossless-join decomposition into 3NF.

7.22 Answer: Given the relation R′ = (A, B, C, D) the set of functional dependen-
cies F ′ = A → B, C → D, B → C allows three distinct BCNF decomposi-
tions.

R1 = {(A, B), (C, D), (B, C)}

is in BCNF as is



42 Chapter 7 Relational-Database Design

R2 = {(A, B), (C, D), (A, C)}

R2 = {(A, B), (C, D), (A, C)}

R3 = {(B, C), (A, D), (A, B)}

7.25 Answer: Suppose R is in 3NF according to the textbook definition. We show
that it is in 3NF according to the definition in the exercise. Let A be a nonprime
attribute in R that is transitively dependent on a key α for R. Then there exists
β ⊆ R such that β → A, α → β, A �∈ α, A �∈ β, and β → α does not hold.
But then β → A violates the textbook definition of 3NF since
• A �∈ β implies β → A is nontrivial
• Since β → α does not hold, β is not a superkey
• A is not any candidate key, since A is nonprime

Now we show that if R is in 3NF according to the exercise definition, it is in 3NF
according to the textbook definition. Suppose R is not in 3NF according the the
textbook definition. Then there is an FD α → β that fails all three conditions.
Thus
• α → β is nontrivial.
• α is not a superkey for R.
• Some A in β − α is not in any candidate key.

This implies that A is nonprime and α → A. Let γ be a candidate key for R.
Then γ → α, α → γ does not hold (since α is not a superkey), A �∈ α, and
A �∈ γ (since A is nonprime). Thus A is transitively dependent on γ, violating
the exercise definition.

7.26 Answer: Referring to the definitions in Exercise 7.25, a relation schema R is said
to be in 3NF if there is no non-prime attribute A in R for which A is transitively
dependent on a key for R.

We can also rewrite the definition of 2NF given here as :
“A relation schemaR is in 2NF if no non-prime attributeA is partially dependent
on any candidate key for R.”

To prove that every 3NF schema is in 2NF, it suffices to show that if a non-
prime attribute A is partially dependent on a candidate key α, then A is also
transitively dependent on the key α.

Let A be a non-prime attribute in R. Let α be a candidate key for R. Suppose
A is partially dependent on α.
• From the definition of a partial dependency, we know that for some proper

subset β of α, β → A.
• Since β ⊂ α, α → β. Also, β → α does not hold, since α is a candidate key.
• Finally, since A is non-prime, it cannot be in either β or α.

Thus we conclude that α → A is a transitive dependency. Hence we have proved
that every 3NF schema is also in 2NF.

7.28 Answer: The relation schemaR = (A, B, C, D, E) and the set of dependencies



Exercises 43

A →→ BC
B →→ CD
E →→ AD

constitute a BCNF decomposition, however it is clearly not in 4NF. (It is BCNF
because all FDs are trivial).


