
C H A P T E R 8

Object-Oriented Databases

Exercises

8.2 Answer: An entity is simply a collection of variables or data items. An object is
an encapsulation of data as well as the methods (code) to operate on the data.
The data members of an object are directly visible only to its methods. The out-
side world can gain access to the object’s data only by passing pre-defined mes-
sages to it, and these messages are implemented by the methods.

8.3 Answer:

class vehicle {
int vehicle-id;
string license-number;
string manufacturer;
string model;
date purchase-date;
string color;

};

class truck isa vehicle {
int cargo-capacity;

};

class sports-car isa vehicle {
int horsepower;
int renter-age-requirement;

};

class van isa vehicle {

45



46 Chapter 8 Object-Oriented Databases

int num-passengers;
};

class off-road-vehicle isa vehicle {
real ground-clearance;
string drivetrain;

};

8.7 Answer: Creation, destruction and access will typically be more time consum-
ing and expensive for persistent objects stored in the database, than for tran-
sient objects in the transaction’s local memory. This is because of the over-heads
in preserving transaction semantics, security and integrity. Since a transient ob-
ject is purely local to the transaction which created it and does not enter the
database, all these over-heads are avoided. Thus, in order to provide efficient
access to purely local and temporary data, transient objects are provided by
persistent programming languages.

8.8 Answer:

a. The schema definitions can be written in two different ways, one of which is
a direct translation from the relational schema, while the other uses object-
oriented features more directly.
• The first scheme is as follows:

class employee : public d Object {
public:

d String person-name;
d String street;
d String city;

};

class company : public d Object {
public:

d String company-name;
d String city;

};

class works : public d Object {
public:

d Ref<employee> person;
d Ref<company> company;
d Long salary;

};

class manages : public d Object {
public:

d Ref<employee> person;
d Ref<employee> manager;



Exercises 47

};

• The second schema is as follows

class employee : public d Object {
public:

d String person-name;
d String street;
d String city;
d Rel Ref<company, employees> company;
d Ref<employee> manager;
d Long salary;

};

class company : public d Object {
public:

d String company-name;
d String city;
d Rel Set<employee, comp> employees;

};

const char employees[] = ”employees”;
const char comp[] = ”comp”;

b. We present queries for the second schema.
• Find the company with the most employees.

d Ref<company> mostemployees(){
d Database emp db obj;
d Database * emp db = &emp db obj;
emp db−>open(”Emp-DB”);
d Transaction Trans;
Trans.begin();
d Extent<company> all comps(emp db);
d Iterator<d Ref<company>> iter=all comps.create iterator();
d Iterator<d Ref<employee>> iter2;
d Ref<company> c, maxc;
d Ref<employee> e;
int count;
int maxcount=0;



48 Chapter 8 Object-Oriented Databases

while(iter.next(c)) {
iter2=(c−>employees).create iterator();
count=0;
while(iter2.next(e)) {

count++;
}
if(maxcount < count) {

maxcount=count;
maxc=c;

}
}
Trans.commit();
return maxc;

}
• Find the company with the smallest payroll.

d Ref<company> smallestpay(){
d Database emp db obj;
d Database * emp db = &emp db obj;
emp db−>open(”Emp-DB”);
d Transaction Trans;
Trans.begin();
d Extent<company> all comps(emp db);
d Iterator<d Ref<company>> iter=all comps.create iterator();
d Iterator<d Ref<employee>> iter2;
d Ref<company> c, minc;
d Ref<employee> e;
d Long sal;
d Long minsal=0;
while(iter.next(c)) {

iter2=(c−>employees).create iterator();
sal=0;
while(iter2.next(e)) {

sal+=e−>salary;
}
if(minsal > sal) {

minsal=sal;
minc=c;

}
}
Trans.commit();
return minc;

}
• Find those companies whose employees earn a higher salary, on aver-

age, than the average salary at First Bank Corporation.



Exercises 49

d Set<d Ref<company>> highersal(){
d Database emp db obj;
d Database * emp db = &emp db obj;
emp db−>open(”Emp-DB”);
d Transaction Trans;
Trans.begin();
d Extent<company> all comps(emp db);
d Iterator<d Ref<company>> iter=all comps.create iterator();
d Iterator<d Ref<employee>> iter2;
d Ref<company> c, FBC=all comps.select(

“company-name=’First Bank Corporation’”);
d Set<d Ref<company>> result;
d Ref<employee> e;
int count;
d Long avsal=0, avFBCsal=0, sal=0;
iter2=(FBC−>employees).create iterator();
while(iter2.next(e)) {

count++;
sal+=e−>salary;

}
avFBCsal=sal/count;
while(iter.next(c)) {

iter2=(c−>employees).create iterator();
sal=0; count=0;
while(iter2.next(e)) {

sal+=e−>salary;
count++;

}
avsal=sal/count;
if(avsal > avFBCsal) {

result.insert element(c);
}

}
Trans.commit();
return result;

}
8.10 Answer: To represent ternary relationships, create a class corresponding to the

relationship and refer to the entities in this class. For example, to represent the
ternary relationship in Figure 2.13, we do the following:

class workson : public d Object {
public:

d Ref<employee> emp;
d Ref<branch> branch;
d Ref<job> job;

};



50 Chapter 8 Object-Oriented Databases

8.12 Answer: If an object is created without any references to it, it can neither be
accessed nor deleted via a program. The only way is for the database system to
locate and delete such objects by itself. This is called garbage collection. One way
to do garbage collection is by the method of mark and sweep. First, the objects
referred to directly by programs are marked. Then references from these objects
to other objects are followed, and those referred objects are marked. This pro-
cedure is followed repeatedly until no more unmarked objects can be reached
by following reference chains from the marked objects. At this point, all these
remaining unmarked objects are deleted. This method is correct; we can prove
that if no new objects are marked after a round of mark and sweep, the remain-
ing unmarked objects are indeed unreferenced.

8.13 Answer: A database system must provide for such features as transactions,
queries (associative retrieval of objects), security, and integrity. A persistent ob-
ject system may not offer such features.


