‘ Chapter 12: Indexing and Hashing

B Basic Concepts
B Ordered Indices
B B+-Tree Index Files

B B-Tree Index Files

ar,.
ARSI

‘ Basic Concepts

B Indexing mechanisms used to speed up access to desired data.
» E.g., author catalog in library

B Search Key - attribute to set of attributes used to look up
records in afile.

B Anindex file consists of records (called index entries) of the

searcvkey | poer

aree
ARSI

‘ Index Evaluation Metrics

B Access types supported efficiently. E.g.,
» records with a specified value in the attribute

» or records with an attribute value falling in a specified range of
values.

m Access time

.
ARSI

‘ Ordered Indices

Indexing techniques evaluated on basis of:
B In an ordered index, index entries are stored sorted on the
search key value. E.g., author catalog in library.

B Primary index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file.

ar.
ARSI

‘ Dense Index Files

B Dense index — Index record appears for every search-key value

in the file.
Brighton A-217 | Brighton 750 :
Downtown A-101 | Downtown 500 .

LVAVAV)

Mianus = A-110 | Downtown 600 E
Perryridge —\ A-215 | Mianus 700

Redwood \ A-102 | Perryridge [400

Round Hill A-201 | Perryridge 900 R
A-218 | Perryridge 700 -
A-222 | Redwood 700 d
A-305 | Round Hill | 350

/

K

/

MLAVAY,

‘ Sparse Index Files

B Sparse Index: contains index records for only some search-key
values.

» Applicable when records are sequentially ordered on search-key
B To locate a record with search-key value K we:
» Find index record with largest search-key value < K

» Search file sequentially starting at the record to which the index

‘ Example of Sparse Index Files

Brighton ———"| A-217 | Brighton 750 -

Mianus ~J A-101 | Downtown 500 B

Redwood \\ A-110 | Downtown 600 =
3 A-215 | Mianus 700

A-102 | Perryridge 400 -
A-201 | Perryridge 900 =
A-218 | Perryridge 700
A-222 | Redwood 700
A-305 | Round Hill 350

MLVAVAVAV AVAVLY/

‘ Multilevel Index

m [f primary index does not fit in memory, access becomes
expensive.

B To reduce number of disk accesses to index records, treat
primary index kept on disk as a sequential file and construct a
sparse index on it.

» outer index — a sparse index of primary index

S oinn

ary
al l'“‘)

‘ Multilevel Index (Cont.)

index data
— block 0 \| block0
L]
-
-
L]
-
L]
index data
block 1 block 1
outer index .
L]

‘ Index Update: Deletion

m |f deleted record was the only record in the file with its particular
search-key value, the search-key is deleted from the index also.

B Single-level index deletion:

» Dense indices — deletion of search-key is similar to file record
deletion.

ar
AN

‘ Index Update: Insertion

B Single-level index insertion:

» Perform a lookup using the search-key value appearing in the
record to be inserted.

» Dense indices — if the search-key value does not appear in the
index, insert it.

» Sparse indices — if index stores an entry for each block of the file, no

an,.
AN

‘ Secondary Indices

® Frequently, one wants to find all the records whose
values in a certain field (which is not the search-key of
the primary index satisfy some condition.
» Example 1: In the account database stored sequentially

by account number, we may want to find all accounts in a
particular branch

Ki/\Y
AN

Secondary Index on balance field of

account

A-101

Downtown

A-217

Brighton

= A-110

Downtown

Mianus

400
500 A-215
600

Perryridge

A-201

Perryridge

N

HEEEEEERE
NLVAVAVAV.VAVAVAY

B Secondary indices have to be dense.

‘ Primary and Secondary Indices

m |ndices offer substantial benefits when searching for records.

B When a file is modified, every index on the file must be updated,
Updating indices imposes overhead on database modification.

B Sequential scan using primary index is efficient, but a sequential
scan using a secondary index is expensive

ary
al l'“‘ M)

‘ B*-Tree Index Files

B*-tree indices are an alternative to indexed-sequential files.

B Disadvantage of indexed-sequential files: performance
degrades as file grows, since many overflow blocks get
created. Periodic reorganization of entire file is required.

m Advantage of B*-tree index files: automatically reorganizes

ar,
AN

‘ B*-Tree Index Files (Cont.)

A B*-tree is a rooted tree satisfying the following properties:

m All paths from root to leaf are of the same length

m Each node that is not a root or a leaf has between [n/2] and
n children.

aree
AN

¥ B*-Tree Node Structure
\/

m Typical node

Pl Kl PZ Pn—l Kn—l Pn

> K; are the search-key values

» P, are pointers to children (for non-leaf nodes) or pointers to records
or buckets of records (for leaf nodes).

B The search-keys in a node are ordered
K <K,<Kg<...<K.

Database System Concepts 12.17 ©Silberschatz, Korth-an

£ Leaf Nodes in B*-Trees
\/

Properties of a leaf node:

m Fori=1,2,..., n-1, pointer P, either points to a file record with
search-key value K;, or to a bucket of pointers to file records,
each record having search-key value K;. Only need bucket
structure if search-key does not form a primary key.

m If L, L, are leaf nodes and i <}j, L's search-key values are less
than L;'s search-key values

® P, points to next leaf node in search-key order

| | Brighton | | Downtown l -f—»

leaf node

A-212 | Brighton 750
A-101 | Downtown | 500
A-110 | Downtown | 600

Y

account file

Database System Concepts 12.18

‘ Non-Leaf Nodes in B*-Trees

® Non leaf nodes form a multi-level sparse index on the leaf nodes.
For a non-leaf node with m pointers:

» All the search-keys in the subtree to which P, points are less than K;

» For 2 <i<n-1, all the search-keys in the subtree to which P, points
have values greater than or equal to K;_; and less than K _;

VEWY
AN

‘ Example of a B*-tree

el |]

[][] [Rewood]]

P e | e e e

10

‘ Example of B*-tree

N I | I [
[gron| v ['tirus || [3—{ oyt o] [Romarn |~ []

TN
AN

Observations about B*-trees

m Since the inter-node connections are done by pointers, “logically”
close blocks need not be “physically” close.

B The non-leaf levels of the B*-tree form a hierarchy of sparse
indices.

B The B*-tree contains a relatively small number of levels

are
ARSI

11

& Queries on B*-Trees
\/
®m Find all records with a search-key value of k.
1. Start with the root node
1. Examine the node for the smallest search-key value > k.

2. If such a value exists, assume it is K;. Then follow P; to
the child node

3. Otherwise k > K__;, where there are m pointers in the
node. Then follow P, to the child node.

2. If the node reached by following the pointer above is not a leaf
node, repeat the above procedure on the node, and follow the
corresponding pointer.

3. Eventually reach a leaf node. If for some i, key K; = k follow
pointer P; to the desired record or bucket. Else no record with
search-key value k exists.

Database System Concepts 12.23 ©Silberschatz, Korth-an

~ Queries on B*Trees (Cont.)

B In processing a query, a path is traversed in the tree from
the root to some leaf node.

m |f there are K search-key values in the file, the path is no
longer than [logr,1(K) I

B A node is generally the same size as a disk block,
typically 4 kilobytes, and n is typically around 100 (40
bytes per index entry).

® With 1 million search key values and n = 100, at most
logs,(1,000,000) = 4 nodes are accessed in a lookup.

m Contrast this with a balanced binary free with 1 million
search key values — around 20 nodes are accessed in a
lookup

» above difference is significant since every node access
may need a disk 1/0O, costing around 20 milliseconds!

Database System Concepts 12.24 ©Silberschatz, Korth.-an

~ Updates on B*-Trees: Insertion
\/

® Find the leaf node in which the search-key value would appear

m If the search-key value is already there in the leaf node, record is
added to file and if necessary a pointer is inserted into the
bucket.

m |If the search-key value is not there, then add the record to the
main file and create a bucket if necessary. Then:

» If there is room in the leaf node, insert (key-value, pointer) pair in the
leaf node

» Otherwise, split the node (along with the new (key-value, pointer)
entry) as discussed in the next slide.

Database System Concepts 12.25

&+ Updates on B*-Trees: Insertion (Cont.)
\/

B Splitting a node:

» take the n(search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first] n/2 in the original node,
and the rest in a new node.

» let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split. If the parent is full, split it
and propagate the split further up.

B The splitting of nodes proceeds upwards till a node that is not full
is found. In the worst case the root node may be split increasing
the height of the tree by 1.

Brighton| |Clearview > |Downtown
L

l ‘,

Result of splitting node containing Brighton and Downtown on
inserting Clearview

Y

Database System Concepts 12.26 ©Silberschatz, Korth.-an

L Updates on B*-Trees: Insertion (Cont.)

7
[emsa 1]
[pre [[]
y Y
I llirighmn |anntnwn|<|>| | Mianus | I H—>| Il‘erryridgcl I |H |Rcdwond| IRound Hi]ll ‘
S
LlDownmwn . Mianus . | IRedwmdl l ‘ |
| lBughl on | | Clearview IH |Dm\11mwnl | H—D—I Mianus ‘ |H Perryridge | H—b-l |Rm|w0“1‘ }{omd]hﬂl ‘ z
— f:_.gl
B*-Tree before and after insertion of “Clearview”
Database System Concepts 12.27 ©Silberschatz, Korth-ane-Sudars
+ = i
- Updates on B*-Trees: Deletion
~

® Find the record to be deleted, and remove it from the
main file and from the bucket (if present)

® Remove (search-key value, pointer) from the leaf node
if there is no bucket or if the bucket has become empty

m |f the node has too few entries due to the removal, and
the entries in the node and a sibling fit into a single
node, then

» Insert all the search-key values in the two nodes into a
single node (the one on the left), and delete the other
node.

» Delete the pair (K_;, P;), where P; is the pointer to the
deleted node, from its parent, recursively using the
above procedure.

Database System Concepts 12.28 ©Silberschatz, Korth

14

‘ Updates on B*-Trees: Deletion

B Otherwise, if the node has too few entries due to the removal,
and the entries in the node and a sibling fit into a single node,
then

» Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries.

» Update the corresponding search-key value in the parent of the
node.

s
dn'ﬂﬂ'ﬂm

Perryridge

‘ Examples of B*-Tree Deletion

|[oosmiown] Jams | [fretweod] []}

e A e
[[T e] { o] [{ e]

ar.
AN

15

‘Examples of B*-Tree Deletion (Cont.)

[remase[[]

IEES |

[|]
1 1

([ocson [Toriew [{ [tanws [T [3{ [remydee] | [3-{Jrecwvooa [rouna]|

I |

[[recwood][rowna s []

1 Example of B*-tree Deletion (Cont.)

|[remrise]

I

| [oowmiown] Janus |

(reawond []

//J /

\ N
[[o T e] T { e [o { e]

Mianus

(Permemnl]]

il

|
/

L[prigtin] [iarview] [powniowr] | [+

Manws || |- [rectwood] [roun i |

16

‘ B*-Tree File Organization

B Index file degradation problem is solved by using B*-Tree
indices. Data file degradation problem is solved by using
B*-Tree File Organization.

B The leaf nodes in a B*-tree file organization store records,
instead of pointers.

7R
AR

‘ B*-Tree File Organization (Cont.)

[an[8 [[€]9 [E4 [(P,nl(cs}lm)l-b

- _
C—I W]0d] [HHxnlwe] [H-os]s [ee]

ary
dl'“"ll-m

17

¥ B-Tree Index Files

B Similar to B+-tree, but B-tree allows search-key values to
appear only once; eliminates redundant storage of search
keys.

B Search keysin nonleaf nodes appear nowhere else in the B-
tree; an additional pointer field for each search key in a
nonleaf node must be included.

B Generalized B-tree leaf node

A A e e e
(a)
| l':,]] Bl | Kl | P?_ | BZ | KZ I | 1Uluu—l | Bm—] I Km—l | 1’:‘m |
(b)
® Nonleaf node — pointers B, are the bucket or file record/#”
pointers.
Database System Concepts 12.35
- B-Tree Index File Example
|l|I][b\\rnmwn|I“ Redwood ”
Downtown/ Redwaood
bucket bucket
H Brighton |IICIeanriew H—h-u Mianus HPerryridgel II.I
Brighton Clearview Mianus Perryridge Round Hill
bucket bucket bucket bucket bucket

B-tree (above) and B+-tree (below) on same data

e O e
e e 132

Database System Concepts 12.36 ©Silberschatz, Korth-and d

Rl!tiwn(x* kluund I !jll|

=

18

‘ B-Tree Index Files (Cont.)

m Advantages of B-Tree indices:
» May use less tree nodes than a corresponding B*-Tree.

» Sometimes possible to find search-key value before reaching leaf
node.

® Disadvantages of B-Tree indices:
» Only small fraction of all search-key values are found early

ar,.
AN

‘ Static Hashing

B A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).

B |n ahash file organization we obtain the bucket of a record
directly from its search-key value using a hash function.

® Hash function h is a function from the set of all search-key

are.
AN

19

'(ample of Hash File Organization (Cont.)

Hash file organization of account file, using branch-name as key
(See figure in next slide.)

H There are 10 buckets,

B The binary representation of the ith character is assumed to
be the integer .

1 A\Y
m'ﬂﬂ'/m.

Example of Hash File Organization

ash file organization of account file, using branch-name as key

AZ01
| AZ18

bucket &

bucket 8

750 A-101 | Downtown
A-110

bucket 9

ary
dl'“"/l-m

20

& Hash Functions

® Worst has function maps all search-key values to the same
bucket; this makes access time proportional to the number of
search-key values in the file.

B An ideal hash function is uniform, i.e., each bucket is assigned
the same number of search-key values from the set of all
possible values.

m |deal hash function is random, so each bucket will have the
same number of records assigned to it irrespective of the actual
distribution of search-key values in the file.

m Typical hash functions perform computation on the internal
binary representation of the search-key.
» For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

Database System Concepts 12.41

~ Handling of Bucket Overflows
\/

B Bucket overflow can occur because of
» Insufficient buckets

» Skew in distribution of records. This can occur due to two
reasons:

* multiple records have same search-key value

* chosen hash function produces non-uniform distribution of key
values

m Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets.

Database System Concepts 12.42

21

‘ Handling of Bucket Overflows (Cont.)

m Overflow chaining — the overflow buckets of a given bucket are
chained together in a linked list.
m Above scheme is called closed hashing.

» An alternative, called open hashing, which does not use overflow
buckets, is not suitable for database applications.

bucket 0

overflow buckets for bucket 1

‘ Hash Indices

® Hashing can be used not only for file organization, but also for
index-structure creation.

® A hash index organizes the search keys, with their associated
record pointers, into a hash file structure.

m Strictly speaking, hash indices are always secondary indices

are.
AN

‘ Example of Hash Index

bucket 0

S EEEEEEEE

‘ Deficiencies of Static Hashing

B |n static hashing, function h maps search-key values to a fixed
set of B of bucket addresses.

» Databases grow with time. If initial number of buckets is too small,
performance will degrade due to too much overflows.

» If file size at some point in the future is anticipated and number of
buckets allocated accordingly, significant amount of space will be

AV
AN

23

‘ Dynamic Hashing

B Good for database that grows and shrinks in size
m Allows the hash function to be modified dynamically

B Extendable hashing — one form of dynamic hashing

» Hash function generates values over a large range — typically b-bit
integers, with b = 32.

» At any time use only a prefix of the hash function to index into a
table of bucket addresses.

1 A\Y
m'ﬂﬂ'/m.

‘ General Extendable Hash Structure

hash prefix ZI

1 /
00]
bucket 1
01.- 5

1]

10-- —_—
1 q

B

bucket 3

bucket address table

24

~

Database System Concepts 12.49

Use of Extendable Hash Structure
~
® Each bucket j stores a value i; all the entries that point to the
same bucket have the same values on the first ij bits.

® To locate the bucket containing search-key K;:
1. Compute h(K)) = X

2. Use the first i high order bits of X as a displacement into bucket
address table, and follow the pointer to appropriate bucket

® To insert a record with search-key value K;
» follow same procedure as look-up and locate the bucket, say j.
» If there is room in the bucket j insert record in the bucket.
» Else the bucket must be split and insertion re-attempted (next slide.)
* Overflow buckets used instead in some cases (will see shortly)

~

Database System Concepts 12.50

Updates in Extendable Hash Structure

To split a bucket j when inserting record with search-key value K;:

m Ifi>i (more than one pointer to bucket j)
» allocate a new bucket z, and set ij and i, to the old ij -+ 1.

» make the second half of the bucket address table entries pointing
to j to point to z

» remove and reinsert each record in bucket j.

» recompute new bucket for K; and insert record in the bucket (further
splitting is required if the bucket is still full)

® Ifi =i (only one pointer to bucket j)
» increment i and double the size of the bucket address table.

~ replace each entry in the table by two entries that point to the same
bucket.

~ recompute new bucket address table entry for K;
Now i > i; so use the first case above.

25

Updates in Extendable Hash Structure
~ (Cont.)

~

® When inserting a value, if the bucket is full after several splits
(that is, i reaches some limit b) create an overflow bucket instead
of splitting bucket entry table further.

B To delete a key value,
» locate it in its bucket and remove it.

» The bucket itself can be removed if it becomes empty (with
appropriate updates to the bucket address table).

» Coalescing of buckets can be done (can coalesce only with a
“buddy” bucket having same value of ij and same ij —1 prefix, if it is
present)

» Decreasing bucket address table size is also possible

* Note: decreasing bucket address table size is an expensive
operation and should be done only if number of buckets bg
much smaller than the size of the table

Database System Concepts 12.51 ©Silberschatz, Korth-ane-Sudars

£) Use of Extendable Hash Structure:
~ Example

branch-name h(branch-name)

Brighton 0010 11011111 1011 0010 1100 00110000
Downtown 1010 0011 1010 00001100 0110 10011111
Mianus 110001111110 11011011 1111 00111010
Perryridge 1111 0001 0010 01001001 0011 01101101
Redwood 0011 01011010 01101100 1001 11101011
Round Hill 1101 10000011 11111001 1100 00000001

hash prefix @

bucket address table bucket 1

Initial Hash structure, bucket size = 2

Database System Concepts 12.52 ©Silberschatz, Korth-and d

26

‘ Example (Cont.)

®m Hash structure after insertion of one Brighton and two Downtown

records

/

bucket addres;table\-— Downtown

Downtown

‘ Example (Cont.)

Hash structure after insertion of Mianus record

hash prefix

750

[2] %Zm Brighton

bucket address table

27

‘ Example (Cont.)

hash prefix Il
3] A-217 [Brighton [750

Perryridge 400
bucket address table Pemw

‘ Example (Cont.)

B Hash structure after insertion of Redwood and Round Hill
records

hash prefix IJ
A-217 |Brighton | 750

A-222 Redwood | 700

2]
A-101 |Downtown| 500
A-110 [Downtown| 600

3]

A-215 |Mianus

A-305 [Round Hill

NS

bucket address table E
A-102

A-201

txtendable Hashing vs. Other Schemes

B Benefits of extendable hashing:
» Hash performance does not degrade with growth of file
» Minimal space overhead

m Disadvantages of extendable hashing
» Extra level of indirection to find desired record

.
AN

‘Comparison of Ordered Indexing and Hashing

m Cost of periodic re-organization
m Relative frequency of insertions and deletions

m |s it desirable to optimize average access time at the expense of
worst-case access time?

B Expected type of queries:

ar.
AN

29

‘ Index Definition in SQL

H Create an index

create index <index-name> on <relation-name>
(<attribute-list>)

E.g.: create index b-index on branch(branch-name)

B Use create unique index to indirectly specify and enforce the

ar,.
AN

Multiple-Key Access

B Use multiple indices for certain types of queries.
B Example:
select account-number
from account
where branch-name = “Perryridge” and balance = 1000

B Possible strategies for processing query using indices on

ar
AN

30

~ Indices on Multiple Attributes

~
Suppose we have an index on combined search-key

(branch-name, balance).

m With the where clause
where branch-name = “Perryridge” and balance = 1000
the index on the combined search-key will fetch only records
that satisfy both conditions.
Using separate indices in less efficient — we may fetch many
records (or pointers) that satisfy only one of the conditions.

m Can also efficiently handle
where branch-name = “Perryridge” and balance < 1000

m But cannot efficiently handle
where branch-name < “Perryridge” and balance = 1000
May fetch many records that satisfy the first but not the
second condition. ‘

Database System Concepts 12.61

- Grid Files

B Structure used to speed the processing of general multiple
search-key queries involving one or more comparison
operators.

B The grid file has a single grid array and one linear scale for
each search-key attribute. The grid array has number of
dimensions equal to number of search-key attributes.

® Multiple cells of grid array can point to same bucket

m To find the bucket for a search-key value, locate the row and
column of its cell using the linear scales and follow pointer

Database System Concepts 12.62

31

‘ Example Grid File for account

[t [' i
Mianus = L

-k L e

|

Linear scale for

branch-name 1y i

[
i
[}
1,

0

Grid Array 0 1 2 3 4 5 6

| 1k | 2k | 5K [10K | 50K | 100K |
1 2 3 4 5 [
Linear scale for balance

‘ Queries on a Grid File

m A grid file on two attributes A and B can handle queries of all
following forms with reasonable efficiency

> (a,<A<a,)
> (b, <B<b,)
> (a,<A<a, A by<B<b,),.

ar
ARSI

32

~ Grid Files (Cont.)

m During insertion, if a bucket becomes full, new bucket can be
created if more than one cell points to it.

» ldea similar to extendable hashing, but on multiple dimensions

» If only one cell points to it, either an overflow bucket must be
created or the grid size must be increased

B Linear scales must be chosen to uniformly distribute records
across cells.

» Otherwise there will be too many overflow buckets.

m Periodic re-organization to increase grid size will help.
» But reorganization can be very expensive.

B Space overhead of grid array can be high.

m R-trees (Chapter 23) are an alternative

Database System Concepts 12.65 ©Silberschatz, Korth-an

~ Bitmap Indices

® Bitmap indices are a special type of index designed for efficient
guerying on multiple keys
B Records in a relation are assumed to be numbered sequentially
from, say, O
» Given a number n it must be easy to retrieve record n
* Particularly easy if records are of fixed size

®m Applicable on attributes that take on a relatively small number of
distinct values
» E.g. gender, country, state, ...

» E.g. income-level (income broken up into a small number of levels
such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

A bitmap is simply an array of bits

Database System Concepts 12.66

- Bitmap Indices (Cont.)
\/

® |n its simplest form a bitmap index on an attribute has a bitmap
for each value of the attribute

» Bitmap has as many bits as records

» In a bitmap for value v, the bit for a record is 1 if the record has the
value v for the attribute, and is 0 otherwise

record income | Bitmaps for gender Bitmaps for
number | name |gender | address -level m 10010 inconte-level
0 John m | Perryridge| L1 L1 [10100
: f 01101
1 Diana| f Brooklyn L2 L2 101000
2 Mary | f Jonestown | L1 L3 00001
3 Peter [m |Brooklyn L4 4 (00010
4 Kathy| f Perryridge [L3 L5 [00000]f
Database System Concepts 12.67 ©Silberschatz, Ko an
2 Bitmap Indices (Cont.)
~

®m Bitmap indices are useful for queries on multiple attributes
» not particularly useful for single attribute queries
® Queries are answered using bitmap operations
» Intersection (and)
» Union (or)
» Complementation (not)

B Each operation takes two bitmaps of the same size and applies
the operation on corresponding bits to get the result bitmap

» E.g. 100110 AND 110011 = 100010

100110 OR 110011 =110111
NOT 100110 = 011001

» Males with income level L1: 10010 AND 10100 = 10000
* Can then retrieve required tuples.
* Counting number of matching tuples is even faster

Database System Concepts 12.68 ©Silberschatz, Korth-and

34

~ Bitmap Indices (Cont.)

B Bitmap indices generally very small compared with relation size

» E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space
used by relation.

* If number of distinct attribute values is 8, bitmap is only 1% of
relation size

m Deletion needs to be handled properly
» Existence bitmap to note if there is a valid record at a record location
» Needed for complementation
* not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
® Should keep bitmaps for all values, even null value
» To correctly handle SQL null semantics for NOT(A=v):
* intersect above result with (NOT bitmap-A-Null)

Database System Concepts 12.69

+~ Efficient Implementation of Bitmap Operations
\/

B Bitmaps are packed into words; a single word and (a basic CPU
instruction) computes and of 32 or 64 bits at once

» E.g. 1-million-bit maps can be anded with just 31,250 instruction

B Counting number of 1s can be done fast by a trick:

» Use each byte to index into a precomputed array of 256 elements
each storing the count of 1s in the binary representation

* Can use pairs of bytes to speed up further at a higher memory
cost

» Add up the retrieved counts
m Bitmaps can be used instead of Tuple-ID lists at leaf levels of

B*-trees, for values that have a large number of matching
records

~ Worthwhile if > 1/64 of the records have that value, assuming
tuple-id is 64 bits

> Above technique merges benefits of bitmap and B*-tree indi e:

Database System Concepts 12.70 ©Silberschatz, Korth.-an

35

‘ Partitioned Hashing

m Hash values are split into segments that depend on each
attribute of the search-key.

(A, A, ..., A) for n attribute search-key

m Example: n =2, for customer, search-key being
(customer-street, customer-city)

ar
AN

36

‘Sequential File For account Records

Brighton ———— | A-217 | Brighton 750 ;
Mianus ~ A-101 | Downtown 500 5
Redwood \\ A-110 | Downtown 600 .

A-215 | Mianus 700 E

A-102 | Perryridge | 400 -
A-201 [Perryridge 900 =
A-218 | Perryridge 700 A
A-222 | Redwood 700]
A-305 | Round Hill 350 =

I__I\J‘U\}\)'\}\) N

eletion of “Perryridge” From the B*-Tree of

L
Figure 12.12

arn
AN

37

[]

Sample account File
A-217 | Brighton 750
A-101 | Downtown | 500
A-110 | Downtown | 600
A-215 | Mianus 700
A-102 | Perryridge | 400
A-201 | Perryridge | 900
A-218 | Perryridge | 700
A-222 | Redwood 700
A-305 | Round Hill | 350

38

