
1

©Silberschatz, Korth and Sudarshan12.1Database System Concepts

Chapter 12: Indexing and HashingChapter 12: Indexing and Hashing

Basic Concepts
Ordered Indices
B+-Tree Index Files
B-Tree Index Files
Static Hashing
Dynamic Hashing
Comparison of Ordered Indexing and Hashing
Index Definition in SQL
Multiple-Key Access

©Silberschatz, Korth and Sudarshan12.2Database System Concepts

Basic ConceptsBasic Concepts
Indexing mechanisms used to speed up access to desired data.

E.g., author catalog in library

Search Key - attribute to set of attributes used to look up
records in a file.
An index file consists of records (called index entries) of the
form

Index files are typically much smaller than the original file
Two basic kinds of indices:

Ordered indices: search keys are stored in sorted order
Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.

search-key pointer

2

©Silberschatz, Korth and Sudarshan12.3Database System Concepts

Index Evaluation MetricsIndex Evaluation Metrics

Access types supported efficiently. E.g.,
records with a specified value in the attribute
or records with an attribute value falling in a specified range of
values.

Access time
Insertion time
Deletion time
Space overhead

©Silberschatz, Korth and Sudarshan12.4Database System Concepts

Ordered IndicesOrdered Indices

In an ordered index, index entries are stored sorted on the
search key value. E.g., author catalog in library.
Primary index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file.

Also called clustering index
The search key of a primary index is usually but not necessarily the
primary key.

Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index.
Index-sequential file: ordered sequential file with a primary index.

Indexing techniques evaluated on basis of:

3

©Silberschatz, Korth and Sudarshan12.5Database System Concepts

Dense Index FilesDense Index Files

Dense index — Index record appears for every search-key value
in the file.

©Silberschatz, Korth and Sudarshan12.6Database System Concepts

Sparse Index FilesSparse Index Files

Sparse Index: contains index records for only some search-key
values.

Applicable when records are sequentially ordered on search-key

To locate a record with search-key value K we:
Find index record with largest search-key value < K
Search file sequentially starting at the record to which the index
record points

Less space and less maintenance overhead for insertions and
deletions.
Generally slower than dense index for locating records.
Good tradeoff: sparse index with an index entry for every block in
file, corresponding to least search-key value in the block.

4

©Silberschatz, Korth and Sudarshan12.7Database System Concepts

Example of Sparse Index FilesExample of Sparse Index Files

©Silberschatz, Korth and Sudarshan12.8Database System Concepts

Multilevel IndexMultilevel Index

If primary index does not fit in memory, access becomes
expensive.
To reduce number of disk accesses to index records, treat
primary index kept on disk as a sequential file and construct a
sparse index on it.

outer index – a sparse index of primary index
inner index – the primary index file

If even outer index is too large to fit in main memory, yet another
level of index can be created, and so on.
Indices at all levels must be updated on insertion or deletion from
the file.

5

©Silberschatz, Korth and Sudarshan12.9Database System Concepts

Multilevel Index (Cont.)Multilevel Index (Cont.)

©Silberschatz, Korth and Sudarshan12.10Database System Concepts

Index Update: DeletionIndex Update: Deletion

If deleted record was the only record in the file with its particular
search-key value, the search-key is deleted from the index also.
Single-level index deletion:

Dense indices – deletion of search-key is similar to file record
deletion.
Sparse indices – if an entry for the search key exists in the index, it
is deleted by replacing the entry in the index with the next search-
key value in the file (in search-key order). If the next search-key
value already has an index entry, the entry is deleted instead of
being replaced.

6

©Silberschatz, Korth and Sudarshan12.11Database System Concepts

Index Update: InsertionIndex Update: Insertion

Single-level index insertion:
Perform a lookup using the search-key value appearing in the
record to be inserted.
Dense indices – if the search-key value does not appear in the
index, insert it.
Sparse indices – if index stores an entry for each block of the file, no
change needs to be made to the index unless a new block is
created. In this case, the first search-key value appearing in the
new block is inserted into the index.

Multilevel insertion (as well as deletion) algorithms are simple
extensions of the single-level algorithms

©Silberschatz, Korth and Sudarshan12.12Database System Concepts

Secondary IndicesSecondary Indices

Frequently, one wants to find all the records whose
values in a certain field (which is not the search-key of
the primary index satisfy some condition.

Example 1: In the account database stored sequentially
by account number, we may want to find all accounts in a
particular branch
Example 2: as above, but where we want to find all
accounts with a specified balance or range of balances

We can have a secondary index with an index record
for each search-key value; index record points to a
bucket that contains pointers to all the actual records
with that particular search-key value.

7

©Silberschatz, Korth and Sudarshan12.13Database System Concepts

Secondary Index on Secondary Index on balancebalance field of field of
accountaccount

©Silberschatz, Korth and Sudarshan12.14Database System Concepts

Primary and Secondary IndicesPrimary and Secondary Indices

Secondary indices have to be dense.
Indices offer substantial benefits when searching for records.
When a file is modified, every index on the file must be updated,
Updating indices imposes overhead on database modification.
Sequential scan using primary index is efficient, but a sequential
scan using a secondary index is expensive

each record access may fetch a new block from disk

8

©Silberschatz, Korth and Sudarshan12.15Database System Concepts

BB++--Tree Index FilesTree Index Files

Disadvantage of indexed-sequential files: performance
degrades as file grows, since many overflow blocks get
created. Periodic reorganization of entire file is required.
Advantage of B+-tree index files: automatically reorganizes
itself with small, local, changes, in the face of insertions and
deletions. Reorganization of entire file is not required to
maintain performance.
Disadvantage of B+-trees: extra insertion and deletion
overhead, space overhead.
Advantages of B+-trees outweigh disadvantages, and they are
used extensively.

B+-tree indices are an alternative to indexed-sequential files.

©Silberschatz, Korth and Sudarshan12.16Database System Concepts

BB++--Tree Index Files (Cont.)Tree Index Files (Cont.)

All paths from root to leaf are of the same length
Each node that is not a root or a leaf has between [n/2] and
n children.
A leaf node has between [(n–1)/2] and n–1 values
Special cases:

If the root is not a leaf, it has at least 2 children.
If the root is a leaf (that is, there are no other nodes in the
tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

9

©Silberschatz, Korth and Sudarshan12.17Database System Concepts

BB++--Tree Node StructureTree Node Structure

Typical node

Ki are the search-key values
Pi are pointers to children (for non-leaf nodes) or pointers to records
or buckets of records (for leaf nodes).

The search-keys in a node are ordered
K1 < K2 < K3 < . . . < Kn–1

©Silberschatz, Korth and Sudarshan12.18Database System Concepts

Leaf Nodes in BLeaf Nodes in B++--TreesTrees

For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with
search-key value Ki, or to a bucket of pointers to file records,
each record having search-key value Ki. Only need bucket
structure if search-key does not form a primary key.
If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than Lj’s search-key values
Pn points to next leaf node in search-key order

Properties of a leaf node:

10

©Silberschatz, Korth and Sudarshan12.19Database System Concepts

NonNon--Leaf Nodes in BLeaf Nodes in B++--TreesTrees

Non leaf nodes form a multi-level sparse index on the leaf nodes.
For a non-leaf node with m pointers:

All the search-keys in the subtree to which P1 points are less than K1

For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi points
have values greater than or equal to Ki–1 and less than Km–1

©Silberschatz, Korth and Sudarshan12.20Database System Concepts

Example of a BExample of a B++--treetree

B+-tree for account file (n = 3)

11

©Silberschatz, Korth and Sudarshan12.21Database System Concepts

Example of BExample of B++--treetree

Leaf nodes must have between 2 and 4 values
(⎡(n–1)/2⎤ and n –1, with n = 5).
Non-leaf nodes other than root must have between 3
and 5 children (⎡(n/2⎤ and n with n =5).
Root must have at least 2 children.

B+-tree for account file (n = 5)

©Silberschatz, Korth and Sudarshan12.22Database System Concepts

Observations about BObservations about B++--treestrees

Since the inter-node connections are done by pointers, “logically”
close blocks need not be “physically” close.
The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.
The B+-tree contains a relatively small number of levels
(logarithmic in the size of the main file), thus searches can be
conducted efficiently.
Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time
(as we shall see).

12

©Silberschatz, Korth and Sudarshan12.23Database System Concepts

Queries on BQueries on B++--TreesTrees

Find all records with a search-key value of k.
1. Start with the root node

1. Examine the node for the smallest search-key value > k.
2. If such a value exists, assume it is Kj. Then follow Pi to

the child node
3. Otherwise k ≥ Km–1, where there are m pointers in the

node. Then follow Pm to the child node.
2. If the node reached by following the pointer above is not a leaf

node, repeat the above procedure on the node, and follow the
corresponding pointer.

3. Eventually reach a leaf node. If for some i, key Ki = k follow
pointer Pi to the desired record or bucket. Else no record with
search-key value k exists.

©Silberschatz, Korth and Sudarshan12.24Database System Concepts

Queries on BQueries on B++--Trees (Cont.)Trees (Cont.)

In processing a query, a path is traversed in the tree from
the root to some leaf node.
If there are K search-key values in the file, the path is no
longer than ⎡ log⎡n/2⎤(K)⎤.
A node is generally the same size as a disk block,
typically 4 kilobytes, and n is typically around 100 (40
bytes per index entry).
With 1 million search key values and n = 100, at most
log50(1,000,000) = 4 nodes are accessed in a lookup.
Contrast this with a balanced binary free with 1 million
search key values — around 20 nodes are accessed in a
lookup

above difference is significant since every node access
may need a disk I/O, costing around 20 milliseconds!

13

©Silberschatz, Korth and Sudarshan12.25Database System Concepts

Updates on BUpdates on B++--Trees: InsertionTrees: Insertion

Find the leaf node in which the search-key value would appear
If the search-key value is already there in the leaf node, record is
added to file and if necessary a pointer is inserted into the
bucket.
If the search-key value is not there, then add the record to the
main file and create a bucket if necessary. Then:

If there is room in the leaf node, insert (key-value, pointer) pair in the
leaf node
Otherwise, split the node (along with the new (key-value, pointer)
entry) as discussed in the next slide.

©Silberschatz, Korth and Sudarshan12.26Database System Concepts

Updates on BUpdates on B++--Trees: Insertion (Cont.)Trees: Insertion (Cont.)

Splitting a node:
take the n(search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first ⎡ n/2 ⎤ in the original node,
and the rest in a new node.
let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split. If the parent is full, split it
and propagate the split further up.

The splitting of nodes proceeds upwards till a node that is not full
is found. In the worst case the root node may be split increasing
the height of the tree by 1.

Result of splitting node containing Brighton and Downtown on
inserting Clearview

14

©Silberschatz, Korth and Sudarshan12.27Database System Concepts

Updates on BUpdates on B++--Trees: Insertion (Cont.)Trees: Insertion (Cont.)

B+-Tree before and after insertion of “Clearview”

©Silberschatz, Korth and Sudarshan12.28Database System Concepts

Updates on BUpdates on B++--Trees: DeletionTrees: Deletion

Find the record to be deleted, and remove it from the
main file and from the bucket (if present)
Remove (search-key value, pointer) from the leaf node
if there is no bucket or if the bucket has become empty
If the node has too few entries due to the removal, and
the entries in the node and a sibling fit into a single
node, then

Insert all the search-key values in the two nodes into a
single node (the one on the left), and delete the other
node.
Delete the pair (Ki–1, Pi), where Pi is the pointer to the
deleted node, from its parent, recursively using the
above procedure.

15

©Silberschatz, Korth and Sudarshan12.29Database System Concepts

Updates on BUpdates on B++--Trees: DeletionTrees: Deletion

Otherwise, if the node has too few entries due to the removal,
and the entries in the node and a sibling fit into a single node,
then

Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries.
Update the corresponding search-key value in the parent of the
node.

The node deletions may cascade upwards till a node which has
⎡n/2 ⎤ or more pointers is found. If the root node has only one
pointer after deletion, it is deleted and the sole child becomes the
root.

©Silberschatz, Korth and Sudarshan12.30Database System Concepts

Examples of BExamples of B++--Tree DeletionTree Deletion

The removal of the leaf node containing “Downtown” did not
result in its parent having too little pointers. So the cascaded
deletions stopped with the deleted leaf node’s parent.

Before and after deleting “Downtown”

16

©Silberschatz, Korth and Sudarshan12.31Database System Concepts

Examples of BExamples of B++--Tree Deletion (Cont.)Tree Deletion (Cont.)

Node with “Perryridge” becomes underfull (actually empty, in this special case)
and merged with its sibling.
As a result “Perryridge” node’s parent became underfull, and was merged with its
sibling (and an entry was deleted from their parent)
Root node then had only one child, and was deleted and its child became the new
root node

Deletion of “Perryridge” from result of previous example

©Silberschatz, Korth and Sudarshan12.32Database System Concepts

Example of BExample of B++--tree Deletion (Cont.)tree Deletion (Cont.)

Parent of leaf containing Perryridge became underfull, and borrowed a
pointer from its left sibling
Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier example

17

©Silberschatz, Korth and Sudarshan12.33Database System Concepts

BB++--Tree File OrganizationTree File Organization

Index file degradation problem is solved by using B+-Tree
indices. Data file degradation problem is solved by using
B+-Tree File Organization.
The leaf nodes in a B+-tree file organization store records,
instead of pointers.
Since records are larger than pointers, the maximum
number of records that can be stored in a leaf node is less
than the number of pointers in a nonleaf node.
Leaf nodes are still required to be half full.
Insertion and deletion are handled in the same way as
insertion and deletion of entries in a B+-tree index.

©Silberschatz, Korth and Sudarshan12.34Database System Concepts

BB++--Tree File Organization (Cont.)Tree File Organization (Cont.)

Good space utilization important since records use more space than
pointers.
To improve space utilization, involve more sibling nodes in redistribution
during splits and merges

Involving 2 siblings in redistribution (to avoid split / merge where possible)
results in each node having at least entries

Example of B+-tree File Organization

⎣ ⎦3/2n

18

©Silberschatz, Korth and Sudarshan12.35Database System Concepts

BB--Tree Index FilesTree Index Files

Similar to B+-tree, but B-tree allows search-key values to
appear only once; eliminates redundant storage of search
keys.
Search keys in nonleaf nodes appear nowhere else in the B-
tree; an additional pointer field for each search key in a
nonleaf node must be included.
Generalized B-tree leaf node

Nonleaf node – pointers Bi are the bucket or file record
pointers.

©Silberschatz, Korth and Sudarshan12.36Database System Concepts

BB--Tree Index File ExampleTree Index File Example

B-tree (above) and B+-tree (below) on same data

19

©Silberschatz, Korth and Sudarshan12.37Database System Concepts

BB--Tree Index Files (Cont.)Tree Index Files (Cont.)

Advantages of B-Tree indices:
May use less tree nodes than a corresponding B+-Tree.
Sometimes possible to find search-key value before reaching leaf
node.

Disadvantages of B-Tree indices:
Only small fraction of all search-key values are found early
Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees
typically have greater depth than corresponding B+-Tree
Insertion and deletion more complicated than in B+-Trees
Implementation is harder than B+-Trees.

Typically, advantages of B-Trees do not out weigh disadvantages.

©Silberschatz, Korth and Sudarshan12.38Database System Concepts

Static HashingStatic Hashing

A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).
In a hash file organization we obtain the bucket of a record
directly from its search-key value using a hash function.
Hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B.
Hash function is used to locate records for access, insertion as
well as deletion.
Records with different search-key values may be mapped to
the same bucket; thus entire bucket has to be searched
sequentially to locate a record.

20

©Silberschatz, Korth and Sudarshan12.39Database System Concepts

Example of Hash File Organization (Cont.)Example of Hash File Organization (Cont.)

There are 10 buckets,
The binary representation of the ith character is assumed to
be the integer i.
The hash function returns the sum of the binary
representations of the characters modulo 10

E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch-name as key
(See figure in next slide.)

©Silberschatz, Korth and Sudarshan12.40Database System Concepts

Example of Hash File Organization Example of Hash File Organization
Hash file organization of account file, using branch-name as key

(see previous slide for details).

21

©Silberschatz, Korth and Sudarshan12.41Database System Concepts

Hash FunctionsHash Functions

Worst has function maps all search-key values to the same
bucket; this makes access time proportional to the number of
search-key values in the file.
An ideal hash function is uniform, i.e., each bucket is assigned
the same number of search-key values from the set of all
possible values.
Ideal hash function is random, so each bucket will have the
same number of records assigned to it irrespective of the actual
distribution of search-key values in the file.
Typical hash functions perform computation on the internal
binary representation of the search-key.

For example, for a string search-key, the binary representations of
all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

©Silberschatz, Korth and Sudarshan12.42Database System Concepts

Handling of Bucket OverflowsHandling of Bucket Overflows
Bucket overflow can occur because of

Insufficient buckets
Skew in distribution of records. This can occur due to two
reasons:

multiple records have same search-key value
chosen hash function produces non-uniform distribution of key
values

Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets.

22

©Silberschatz, Korth and Sudarshan12.43Database System Concepts

Handling of Bucket Overflows (Cont.)Handling of Bucket Overflows (Cont.)
Overflow chaining – the overflow buckets of a given bucket are
chained together in a linked list.
Above scheme is called closed hashing.

An alternative, called open hashing, which does not use overflow
buckets, is not suitable for database applications.

©Silberschatz, Korth and Sudarshan12.44Database System Concepts

Hash IndicesHash Indices

Hashing can be used not only for file organization, but also for
index-structure creation.
A hash index organizes the search keys, with their associated
record pointers, into a hash file structure.
Strictly speaking, hash indices are always secondary indices

if the file itself is organized using hashing, a separate primary hash
index on it using the same search-key is unnecessary.
However, we use the term hash index to refer to both secondary
index structures and hash organized files.

23

©Silberschatz, Korth and Sudarshan12.45Database System Concepts

Example of Hash IndexExample of Hash Index

©Silberschatz, Korth and Sudarshan12.46Database System Concepts

Deficiencies of Static HashingDeficiencies of Static Hashing

In static hashing, function h maps search-key values to a fixed
set of B of bucket addresses.

Databases grow with time. If initial number of buckets is too small,
performance will degrade due to too much overflows.
If file size at some point in the future is anticipated and number of
buckets allocated accordingly, significant amount of space will be
wasted initially.
If database shrinks, again space will be wasted.
One option is periodic re-organization of the file with a new hash
function, but it is very expensive.

These problems can be avoided by using techniques that allow
the number of buckets to be modified dynamically.

24

©Silberschatz, Korth and Sudarshan12.47Database System Concepts

Dynamic HashingDynamic Hashing
Good for database that grows and shrinks in size
Allows the hash function to be modified dynamically
Extendable hashing – one form of dynamic hashing

Hash function generates values over a large range — typically b-bit
integers, with b = 32.
At any time use only a prefix of the hash function to index into a
table of bucket addresses.
Let the length of the prefix be i bits, 0 ≤ i ≤ 32.

Bucket address table size = 2i. Initially i = 0
Value of i grows and shrinks as the size of the database grows and
shrinks.
Multiple entries in the bucket address table may point to a bucket.

Thus, actual number of buckets is < 2i

The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

©Silberschatz, Korth and Sudarshan12.48Database System Concepts

General Extendable Hash Structure General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see
next slide for details)

25

©Silberschatz, Korth and Sudarshan12.49Database System Concepts

Use of Extendable Hash StructureUse of Extendable Hash Structure
Each bucket j stores a value ij; all the entries that point to the
same bucket have the same values on the first ij bits.
To locate the bucket containing search-key Kj:
1. Compute h(Kj) = X
2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket

To insert a record with search-key value Kj

follow same procedure as look-up and locate the bucket, say j.
If there is room in the bucket j insert record in the bucket.
Else the bucket must be split and insertion re-attempted (next slide.)

Overflow buckets used instead in some cases (will see shortly)

©Silberschatz, Korth and Sudarshan12.50Database System Concepts

Updates in Extendable Hash Structure Updates in Extendable Hash Structure

If i > ij (more than one pointer to bucket j)
allocate a new bucket z, and set ij and iz to the old ij -+ 1.
make the second half of the bucket address table entries pointing
to j to point to z
remove and reinsert each record in bucket j.
recompute new bucket for Kj and insert record in the bucket (further
splitting is required if the bucket is still full)

If i = ij (only one pointer to bucket j)
increment i and double the size of the bucket address table.
replace each entry in the table by two entries that point to the same
bucket.
recompute new bucket address table entry for Kj
Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

26

©Silberschatz, Korth and Sudarshan12.51Database System Concepts

Updates in Extendable Hash Structure Updates in Extendable Hash Structure
(Cont.)(Cont.)

When inserting a value, if the bucket is full after several splits
(that is, i reaches some limit b) create an overflow bucket instead
of splitting bucket entry table further.
To delete a key value,

locate it in its bucket and remove it.
The bucket itself can be removed if it becomes empty (with
appropriate updates to the bucket address table).
Coalescing of buckets can be done (can coalesce only with a
“buddy” bucket having same value of ij and same ij –1 prefix, if it is
present)
Decreasing bucket address table size is also possible

Note: decreasing bucket address table size is an expensive
operation and should be done only if number of buckets becomes
much smaller than the size of the table

©Silberschatz, Korth and Sudarshan12.52Database System Concepts

Use of Extendable Hash Structure: Use of Extendable Hash Structure:
Example Example

Initial Hash structure, bucket size = 2

27

©Silberschatz, Korth and Sudarshan12.53Database System Concepts

Example (Cont.)Example (Cont.)

Hash structure after insertion of one Brighton and two Downtown
records

©Silberschatz, Korth and Sudarshan12.54Database System Concepts

Example (Cont.)Example (Cont.)
Hash structure after insertion of Mianus record

28

©Silberschatz, Korth and Sudarshan12.55Database System Concepts

Example (Cont.)Example (Cont.)

Hash structure after insertion of three Perryridge records

©Silberschatz, Korth and Sudarshan12.56Database System Concepts

Example (Cont.)Example (Cont.)

Hash structure after insertion of Redwood and Round Hill
records

29

©Silberschatz, Korth and Sudarshan12.57Database System Concepts

Extendable Hashing vs. Other SchemesExtendable Hashing vs. Other Schemes

Benefits of extendable hashing:
Hash performance does not degrade with growth of file
Minimal space overhead

Disadvantages of extendable hashing
Extra level of indirection to find desired record
Bucket address table may itself become very big (larger than
memory)

Need a tree structure to locate desired record in the structure!
Changing size of bucket address table is an expensive operation

Linear hashing is an alternative mechanism which avoids these
disadvantages at the possible cost of more bucket overflows

©Silberschatz, Korth and Sudarshan12.58Database System Concepts

Comparison of Ordered Indexing and HashingComparison of Ordered Indexing and Hashing

Cost of periodic re-organization
Relative frequency of insertions and deletions
Is it desirable to optimize average access time at the expense of
worst-case access time?
Expected type of queries:

Hashing is generally better at retrieving records having a specified
value of the key.
If range queries are common, ordered indices are to be preferred

30

©Silberschatz, Korth and Sudarshan12.59Database System Concepts

Index Definition in SQLIndex Definition in SQL

Create an index
create index <index-name> on <relation-name>

(<attribute-list>)
E.g.: create index b-index on branch(branch-name)

Use create unique index to indirectly specify and enforce the
condition that the search key is a candidate key is a candidate
key.

Not really required if SQL unique integrity constraint is supported

To drop an index
drop index <index-name>

©Silberschatz, Korth and Sudarshan12.60Database System Concepts

MultipleMultiple--Key AccessKey Access
Use multiple indices for certain types of queries.
Example:
select account-number
from account
where branch-name = “Perryridge” and balance = 1000

Possible strategies for processing query using indices on
single attributes:
1. Use index on branch-name to find accounts with balances of

$1000; test branch-name = “Perryridge”.
2. Use index on balance to find accounts with balances of $1000;

test branch-name = “Perryridge”.
3. Use branch-name index to find pointers to all records pertaining to

the Perryridge branch. Similarly use index on balance. Take
intersection of both sets of pointers obtained.

31

©Silberschatz, Korth and Sudarshan12.61Database System Concepts

Indices on Multiple AttributesIndices on Multiple Attributes

With the where clause
where branch-name = “Perryridge” and balance = 1000
the index on the combined search-key will fetch only records
that satisfy both conditions.
Using separate indices in less efficient — we may fetch many
records (or pointers) that satisfy only one of the conditions.
Can also efficiently handle
where branch-name = “Perryridge” and balance < 1000
But cannot efficiently handle
where branch-name < “Perryridge” and balance = 1000
May fetch many records that satisfy the first but not the
second condition.

Suppose we have an index on combined search-key
(branch-name, balance).

©Silberschatz, Korth and Sudarshan12.62Database System Concepts

Grid FilesGrid Files
Structure used to speed the processing of general multiple
search-key queries involving one or more comparison
operators.
The grid file has a single grid array and one linear scale for
each search-key attribute. The grid array has number of
dimensions equal to number of search-key attributes.
Multiple cells of grid array can point to same bucket
To find the bucket for a search-key value, locate the row and
column of its cell using the linear scales and follow pointer

32

©Silberschatz, Korth and Sudarshan12.63Database System Concepts

Example Grid File for Example Grid File for accountaccount

©Silberschatz, Korth and Sudarshan12.64Database System Concepts

Queries on a Grid FileQueries on a Grid File

A grid file on two attributes A and B can handle queries of all
following forms with reasonable efficiency

(a1 ≤ A ≤ a2)
(b1 ≤ B ≤ b2)
(a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2),.

E.g., to answer (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2), use linear scales to
find corresponding candidate grid array cells, and look up all the
buckets pointed to from those cells.

33

©Silberschatz, Korth and Sudarshan12.65Database System Concepts

Grid Files (Cont.)Grid Files (Cont.)

During insertion, if a bucket becomes full, new bucket can be
created if more than one cell points to it.

Idea similar to extendable hashing, but on multiple dimensions
If only one cell points to it, either an overflow bucket must be

created or the grid size must be increased

Linear scales must be chosen to uniformly distribute records
across cells.

Otherwise there will be too many overflow buckets.

Periodic re-organization to increase grid size will help.
But reorganization can be very expensive.

Space overhead of grid array can be high.
R-trees (Chapter 23) are an alternative

©Silberschatz, Korth and Sudarshan12.66Database System Concepts

Bitmap IndicesBitmap Indices

Bitmap indices are a special type of index designed for efficient
querying on multiple keys
Records in a relation are assumed to be numbered sequentially
from, say, 0

Given a number n it must be easy to retrieve record n
Particularly easy if records are of fixed size

Applicable on attributes that take on a relatively small number of
distinct values

E.g. gender, country, state, …
E.g. income-level (income broken up into a small number of levels
such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

A bitmap is simply an array of bits

34

©Silberschatz, Korth and Sudarshan12.67Database System Concepts

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

In its simplest form a bitmap index on an attribute has a bitmap
for each value of the attribute

Bitmap has as many bits as records
In a bitmap for value v, the bit for a record is 1 if the record has the
value v for the attribute, and is 0 otherwise

©Silberschatz, Korth and Sudarshan12.68Database System Concepts

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

Bitmap indices are useful for queries on multiple attributes
not particularly useful for single attribute queries

Queries are answered using bitmap operations
Intersection (and)
Union (or)
Complementation (not)

Each operation takes two bitmaps of the same size and applies
the operation on corresponding bits to get the result bitmap

E.g. 100110 AND 110011 = 100010
100110 OR 110011 = 110111

NOT 100110 = 011001
Males with income level L1: 10010 AND 10100 = 10000

Can then retrieve required tuples.
Counting number of matching tuples is even faster

35

©Silberschatz, Korth and Sudarshan12.69Database System Concepts

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

Bitmap indices generally very small compared with relation size
E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space
used by relation.

If number of distinct attribute values is 8, bitmap is only 1% of
relation size

Deletion needs to be handled properly
Existence bitmap to note if there is a valid record at a record location
Needed for complementation

not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap

Should keep bitmaps for all values, even null value
To correctly handle SQL null semantics for NOT(A=v):

intersect above result with (NOT bitmap-A-Null)

©Silberschatz, Korth and Sudarshan12.70Database System Concepts

Efficient Implementation of Bitmap OperationsEfficient Implementation of Bitmap Operations

Bitmaps are packed into words; a single word and (a basic CPU
instruction) computes and of 32 or 64 bits at once

E.g. 1-million-bit maps can be anded with just 31,250 instruction
Counting number of 1s can be done fast by a trick:

Use each byte to index into a precomputed array of 256 elements
each storing the count of 1s in the binary representation

Can use pairs of bytes to speed up further at a higher memory
cost

Add up the retrieved counts
Bitmaps can be used instead of Tuple-ID lists at leaf levels of
B+-trees, for values that have a large number of matching
records

Worthwhile if > 1/64 of the records have that value, assuming a
tuple-id is 64 bits
Above technique merges benefits of bitmap and B+-tree indices

36

End of ChapterEnd of Chapter

©Silberschatz, Korth and Sudarshan12.72Database System Concepts

Partitioned HashingPartitioned Hashing

Hash values are split into segments that depend on each
attribute of the search-key.

(A1, A2, . . . , An) for n attribute search-key
Example: n = 2, for customer, search-key being
(customer-street, customer-city)

search-key value hash value
(Main, Harrison) 101 111
(Main, Brooklyn) 101 001
(Park, Palo Alto) 010 010
(Spring, Brooklyn) 001 001
(Alma, Palo Alto) 110 010

To answer equality query on single attribute, need to look
up multiple buckets. Similar in effect to grid files.

37

©Silberschatz, Korth and Sudarshan12.73Database System Concepts

Sequential File For Sequential File For account account RecordsRecords

©Silberschatz, Korth and Sudarshan12.74Database System Concepts

Deletion of “Perryridge” From the BDeletion of “Perryridge” From the B++--Tree of Tree of
Figure 12.12Figure 12.12

38

©Silberschatz, Korth and Sudarshan12.75Database System Concepts

Sample Sample accountaccount FileFile

