
©Silberschatz, Korth and Sudarshan3.1Database System Concepts

Chapter 3: Relational ModelChapter 3: Relational Model
Structure of Relational Databases
Relational Algebra
Tuple Relational Calculus
Domain Relational Calculus
Extended Relational-Algebra-Operations
Modification of the Database
Views

©Silberschatz, Korth and Sudarshan3.2Database System Concepts

Example of a RelationExample of a Relation

©Silberschatz, Korth and Sudarshan3.3Database System Concepts

Basic StructureBasic Structure

Formally, given sets D1, D2, …. Dn a relation r is a subset of
D1 x D2 x … x Dn
Thus a relation is a set of n-tuples (a1, a2, …, an) where
each ai ∈ Di

Example: if
customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

Then r = { (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield)}

is a relation over customer-name x customer-street x customer-city

©Silberschatz, Korth and Sudarshan3.4Database System Concepts

Attribute TypesAttribute Types

Each attribute of a relation has a name
The set of allowed values for each attribute is called the domain
of the attribute
Attribute values are (normally) required to be atomic, that is,
indivisible

E.g. multivalued attribute values are not atomic
E.g. composite attribute values are not atomic

The special value null is a member of every domain
The null value causes complications in the definition of many
operations

we shall ignore the effect of null values in our main presentation
and consider their effect later

©Silberschatz, Korth and Sudarshan3.5Database System Concepts

Relation SchemaRelation Schema

A1, A2, …, An are attributes
R = (A1, A2, …, An) is a relation schema

E.g. Customer-schema =
(customer-name, customer-street, customer-city)

r(R) is a relation on the relation schema R
E.g. customer (Customer-schema)

©Silberschatz, Korth and Sudarshan3.6Database System Concepts

Relation InstanceRelation Instance
The current values (relation instance) of a relation are
specified by a table
An element t of r is a tuple, represented by a row in a table

attributes
(or columns)

customer-citycustomer-name customer-street

Main
North
North
Park

Harrison
Rye
Rye

Pittsfield

Jones
Smith
Curry

Lindsay

tuples
(or rows)

customer

©Silberschatz, Korth and Sudarshan3.7Database System Concepts

Relations are UnorderedRelations are Unordered
Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
E.g. account relation with unordered tuples

©Silberschatz, Korth and Sudarshan3.8Database System Concepts

DatabaseDatabase

A database consists of multiple relations
Information about an enterprise is broken up into parts, with each
relation storing one part of the information

E.g.: account : stores information about accounts
depositor : stores information about which customer

owns which account
customer : stores information about customers

Storing all information as a single relation such as
bank(account-number, balance, customer-name, ..)

results in
repetition of information (e.g. two customers own an account)
the need for null values (e.g. represent a customer without an
account)

Normalization theory (Chapter 7) deals with how to design
relational schemas

©Silberschatz, Korth and Sudarshan3.9Database System Concepts

The The customer customer RelationRelation

©Silberschatz, Korth and Sudarshan3.10Database System Concepts

The The depositor depositor RelationRelation

©Silberschatz, Korth and Sudarshan3.11Database System Concepts

EE--R Diagram for the Banking EnterpriseR Diagram for the Banking Enterprise

©Silberschatz, Korth and Sudarshan3.12Database System Concepts

KeysKeys

Let K ⊆ R
K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R)

by “possible r” we mean a relation r that could exist in the enterprise
we are modeling.
Example: {customer-name, customer-street} and

{customer-name}
are both superkeys of Customer, if no two customers can possibly
have the same name.

K is a candidate key if K is minimal
Example: {customer-name} is a candidate key for Customer,
since it is a superkey (assuming no two customers can possibly
have the same name), and no subset of it is a superkey.

©Silberschatz, Korth and Sudarshan3.13Database System Concepts

Determining Keys from EDetermining Keys from E--R SetsR Sets

Strong entity set. The primary key of the entity set becomes
the primary key of the relation.
Weak entity set. The primary key of the relation consists of the
union of the primary key of the strong entity set and the
discriminator of the weak entity set.
Relationship set. The union of the primary keys of the related
entity sets becomes a super key of the relation.

For binary many-to-one relationship sets, the primary key of the
“many” entity set becomes the relation’s primary key.
For one-to-one relationship sets, the relation’s primary key can be
that of either entity set.
For many-to-many relationship sets, the union of the primary keys
becomes the relation’s primary key

©Silberschatz, Korth and Sudarshan3.14Database System Concepts

Schema Diagram for the Banking EnterpriseSchema Diagram for the Banking Enterprise

©Silberschatz, Korth and Sudarshan3.15Database System Concepts

Query LanguagesQuery Languages

Language in which user requests information from the database.
Categories of languages

procedural
non-procedural

“Pure” languages:
Relational Algebra
Tuple Relational Calculus
Domain Relational Calculus

Pure languages form underlying basis of query languages that
people use.

©Silberschatz, Korth and Sudarshan3.16Database System Concepts

Relational AlgebraRelational Algebra

Procedural language
Six basic operators

select
project
union
set difference
Cartesian product
rename

The operators take one or more relations as inputs and give a
new relation as a result.

©Silberschatz, Korth and Sudarshan3.17Database System Concepts

Select Operation Select Operation –– ExampleExample

• Relation r A B C D

1

5

12

23

7

7

3

10

α

α

β

β

α

β

β

β

• σA=B ^ D > 5 (r)
A B C D

1

23

7

10

α

β

α

β

©Silberschatz, Korth and Sudarshan3.18Database System Concepts

Select OperationSelect Operation

Notation: σ p(r)
p is called the selection predicate
Defined as:

σp(r) = {t | t ∈ r and p(t)}
Where p is a formula in propositional calculus consisting
of terms connected by : ∧ (and), ∨ (or), ¬ (not)
Each term is one of:

<attribute> op <attribute> or <constant>
where op is one of: =, ≠, >, ≥. <. ≤
Example of selection:
σ branch-name=“Perryridge”(account)

©Silberschatz, Korth and Sudarshan3.19Database System Concepts

Project Operation Project Operation –– ExampleExample

A B CRelation r:

10

20

30

40

1

1

1

2

α

α

β

β

A C A C∏A,C (r)

1

1

2

α

β

β

1

1

1

2

α

α

β

β

=

©Silberschatz, Korth and Sudarshan3.20Database System Concepts

Project OperationProject Operation

Notation:

∏A1, A2, …, Ak (r)
where A1, A2 are attribute names and r is a relation name.
The result is defined as the relation of k columns obtained by
erasing the columns that are not listed
Duplicate rows removed from result, since relations are sets
E.g. To eliminate the branch-name attribute of account

∏account-number, balance (account)

©Silberschatz, Korth and Sudarshan3.21Database System Concepts

Union Operation Union Operation –– ExampleExample

Relations r, s: A B A B

1

2

1

α

α

β

2

3

α

β

s
r

r ∪ s: A B

1

2

1

3

α

α

β

β

©Silberschatz, Korth and Sudarshan3.22Database System Concepts

Union OperationUnion Operation

Notation: r ∪ s
Defined as:

r ∪ s = {t | t ∈ r or t ∈ s}

For r ∪ s to be valid.
1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., 2nd column

of r deals with the same type of values as does the 2nd
column of s)

E.g. to find all customers with either an account or a loan
∏customer-name (depositor) ∪ ∏customer-name (borrower)

©Silberschatz, Korth and Sudarshan3.23Database System Concepts

Set Difference Operation Set Difference Operation –– ExampleExample

Relations r, s: A B A B

1

2

1

α

α

β

2

3

α

β

s
r

r – s: A B

1

1

α

β

©Silberschatz, Korth and Sudarshan3.24Database System Concepts

Set Difference OperationSet Difference Operation

Notation r – s
Defined as:

r – s = {t | t ∈ r and t ∉ s}
Set differences must be taken between compatible relations.

r and s must have the same arity
attribute domains of r and s must be compatible

©Silberschatz, Korth and Sudarshan3.25Database System Concepts

CartesianCartesian--Product OperationProduct Operation--ExampleExample

A B C D ERelations r, s:

10
10
20
10

a
a
b
b

α
β
β
γ

1

2

α

β
r

s
r x s:

DA B C E

α
α
α
α
β
β
β
β

1
1
1
1
2
2
2
2

α
β
β
γ
α
β
β
γ

10
10
20
10
10
10
20
10

a
a
b
b
a
a
b
b

©Silberschatz, Korth and Sudarshan3.26Database System Concepts

CartesianCartesian--Product OperationProduct Operation

Notation r x s
Defined as:

r x s = {t q | t ∈ r and q ∈ s}
Assume that attributes of r(R) and s(S) are disjoint. (That is,
R ∩ S = ∅).
If attributes of r(R) and s(S) are not disjoint, then renaming must
be used.

©Silberschatz, Korth and Sudarshan3.27Database System Concepts

Composition of OperationsComposition of Operations

Can build expressions using multiple operations
Example: σA=C(r x s)
r x s

σA=C(r x s)

A B C D E

α
α
α
α
β
β
β
β

1
1
1
1
2
2
2
2

α
β
β
γ
α
β
β
γ

10
10
20
10
10
10
20
10

a
a
b
b
a
a
b
b

A B C D E

α
β
β

1
2
2

α
β
β

10
20
20

a
a
b

©Silberschatz, Korth and Sudarshan3.28Database System Concepts

Rename OperationRename Operation

Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.
Allows us to refer to a relation by more than one name.

Example:

ρ x (E)
returns the expression E under the name X
If a relational-algebra expression E has arity n, then

ρx (A1, A2, …, An) (E)
returns the result of expression E under the name X, and with the
attributes renamed to A1, A2, …., An.

©Silberschatz, Korth and Sudarshan3.29Database System Concepts

Banking ExampleBanking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan3.30Database System Concepts

Example QueriesExample Queries

Find all loans of over $1200

σamount > 1200 (loan)

Find the loan number for each loan of an amount greater than
$1200

∏loan-number (σamount > 1200 (loan))

©Silberschatz, Korth and Sudarshan3.31Database System Concepts

Example QueriesExample Queries

Find the names of all customers who have a loan, an account, or
both, from the bank

∏customer-name (borrower) ∪ ∏customer-name (depositor)

Find the names of all customers who have a loan and an
account at bank.

∏customer-name (borrower) ∩ ∏customer-name (depositor)

©Silberschatz, Korth and Sudarshan3.32Database System Concepts

Example QueriesExample Queries

Find the names of all customers who have a loan at the Perryridge
branch.

∏customer-name (σbranch-name=“Perryridge”

(σborrower.loan-number = loan.loan-number(borrower x loan)))

Find the names of all customers who have a loan at the
Perryridge branch but do not have an account at any branch of
the bank.

∏customer-name (σbranch-name = “Perryridge”

(σborrower.loan-number = loan.loan-number(borrower x loan))) –
∏customer-name(depositor)

©Silberschatz, Korth and Sudarshan3.33Database System Concepts

Example QueriesExample Queries
Find the names of all customers who have a loan at the Perryridge
branch.

−Query 1

∏customer-name(σbranch-name = “Perryridge” (
σborrower.loan-number = loan.loan-number(borrower x loan)))

− Query 2

∏customer-name(σloan.loan-number = borrower.loan-number(
(σbranch-name = “Perryridge”(loan)) x borrower))

©Silberschatz, Korth and Sudarshan3.34Database System Concepts

Example QueriesExample Queries

Find the largest account balance
Rename account relation as d
The query is:

∏balance(account) - ∏account.balance

(σaccount.balance < d.balance (account x ρd (account)))

©Silberschatz, Korth and Sudarshan3.35Database System Concepts

Formal DefinitionFormal Definition

A basic expression in the relational algebra consists of either one
of the following:

A relation in the database
A constant relation

Let E1 and E2 be relational-algebra expressions; the following are
all relational-algebra expressions:

E1 ∪ E2

E1 - E2

E1 x E2

σp (E1), P is a predicate on attributes in E1

∏s(E1), S is a list consisting of some of the attributes in E1
ρ x (E1), x is the new name for the result of E1

©Silberschatz, Korth and Sudarshan3.36Database System Concepts

Additional OperationsAdditional Operations

We define additional operations that do not add any power to the
relational algebra, but that simplify common queries.

Set intersection

Natural join
Division
Assignment

©Silberschatz, Korth and Sudarshan3.37Database System Concepts

SetSet--Intersection OperationIntersection Operation

Notation: r ∩ s
Defined as:
r ∩ s ={ t | t ∈ r and t ∈ s }
Assume:

r, s have the same arity
attributes of r and s are compatible

Note: r ∩ s = r - (r - s)

©Silberschatz, Korth and Sudarshan3.38Database System Concepts

SetSet--Intersection Operation Intersection Operation -- ExampleExample

Relation r, s:

r ∩ s

A B A B
α
α
β

1
2
1

α
β

2
3

r s

A B

α 2

©Silberschatz, Korth and Sudarshan3.39Database System Concepts

NaturalNatural--Join OperationJoin Operation
Notation: r s

Let r and s be relations on schemas R and S respectively.
Then, r s is a relation on schema R ∪ S obtained as follows:

Consider each pair of tuples tr from r and ts from s.
If tr and ts have the same value on each of the attributes in R ∩ S, add
a tuple t to the result, where

t has the same value as tr on r

t has the same value as ts on s

Example:
R = (A, B, C, D)
S = (E, B, D)

Result schema = (A, B, C, D, E)
r s is defined as:

∏r.A, r.B, r.C, r.D, s.E (σr.B = s.B ∧ r.D = s.D (r x s))

©Silberschatz, Korth and Sudarshan3.40Database System Concepts

Natural Join Operation Natural Join Operation –– ExampleExample

Relations r, s:

B D EA B C D

a
a
a
b
b

1
3
1
2
3

α
β
γ
δ
∈

a
a
b
a
b

1
2
4
1
2

α
β
γ
α
δ

α
γ
β
γ
β

r s

A B C D Er s

α
α
α
α
δ

1
1
1
1
2

a
a
a
a
b

α
α
γ
γ
β

α
γ
α
γ
δ

©Silberschatz, Korth and Sudarshan3.41Database System Concepts

Division OperationDivision Operation

r ÷ s

Suited to queries that include the phrase “for all”.
Let r and s be relations on schemas R and S respectively
where

R = (A1, …, Am, B1, …, Bn)
S = (B1, …, Bn)

The result of r ÷ s is a relation on schema
R – S = (A1, …, Am)

r ÷ s = { t | t ∈ ∏ R-S(r) ∧ ∀ u ∈ s (tu ∈ r) }

©Silberschatz, Korth and Sudarshan3.42Database System Concepts

Division Operation Division Operation –– ExampleExample

Relations r, s: A B B

1
2
3
1
1
1
3
4
6
1
2

α
α
α
β
γ
δ
δ
δ
∈
∈
β

1

2

s

r ÷ s: A r

α

β

©Silberschatz, Korth and Sudarshan3.43Database System Concepts

Another Division ExampleAnother Division Example

Relations r, s: A B C D E D E

a
b

1
1

a
a
a
a
a
a
a
a

a
a
b
a
b
a
b
b

1
1
1
1
3
1
1
1

α
α
α
β
β
γ
γ
γ

α
γ
γ
γ
γ
γ
γ
β

s

r

r ÷ s: A B C

a
a

α
γ

γ
γ

©Silberschatz, Korth and Sudarshan3.44Database System Concepts

Division Operation (Cont.)Division Operation (Cont.)

Property
Let q – r ÷ s
Then q is the largest relation satisfying q x s ⊆ r

Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S ⊆ R

r ÷ s = ∏R-S (r) –∏R-S ((∏R-S (r) x s) – ∏R-S,S(r))

To see why
∏R-S,S(r) simply reorders attributes of r

∏R-S(∏R-S (r) x s) – ∏R-S,S(r)) gives those tuples t in

∏R-S (r) such that for some tuple u ∈ s, tu ∉ r.

©Silberschatz, Korth and Sudarshan3.45Database System Concepts

Assignment OperationAssignment Operation
The assignment operation (←) provides a convenient way to
express complex queries.

Write query as a sequential program consisting of
a series of assignments
followed by an expression whose value is displayed as a result of
the query.

Assignment must always be made to a temporary relation variable.

Example: Write r ÷ s as

temp1 ← ∏R-S (r)
temp2 ← ∏R-S ((temp1 x s) – ∏R-S,S (r))
result = temp1 – temp2

The result to the right of the ← is assigned to the relation variable on
the left of the ←.

May use variable in subsequent expressions.

©Silberschatz, Korth and Sudarshan3.46Database System Concepts

Example QueriesExample Queries

Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.

where CN denotes customer-name and BN denotes
branch-name.

Query 1

∏CN(σBN=“Downtown”(depositor account)) ∩

∏CN(σBN=“Uptown”(depositor account))

Query 2

∏customer-name, branch-name (depositor account)
÷ ρtemp(branch-name) ({(“Downtown”), (“Uptown”)})

©Silberschatz, Korth and Sudarshan3.47Database System Concepts

Example QueriesExample Queries

Find all customers who have an account at all branches located
in Brooklyn city.

∏customer-name, branch-name (depositor account)
÷ ∏branch-name (σbranch-city = “Brooklyn” (branch))

©Silberschatz, Korth and Sudarshan3.48Database System Concepts

Extended RelationalExtended Relational--AlgebraAlgebra--OperationsOperations

Generalized Projection
Outer Join
Aggregate Functions

©Silberschatz, Korth and Sudarshan3.49Database System Concepts

Generalized ProjectionGeneralized Projection

Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

∏ F1, F2, …, Fn(E)
E is any relational-algebra expression
Each of F1, F2, …, Fn are are arithmetic expressions involving
constants and attributes in the schema of E.
Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

∏customer-name, limit – credit-balance (credit-info)

©Silberschatz, Korth and Sudarshan3.50Database System Concepts

Aggregate Functions and OperationsAggregate Functions and Operations

Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

Aggregate operation in relational algebra

G1, G2, …, Gn g F1(A1), F2(A2),…, Fn(An) (E)

E is any relational-algebra expression
G1, G2 …, Gn is a list of attributes on which to group (can be empty)
Each Fi is an aggregate function
Each Ai is an attribute name

©Silberschatz, Korth and Sudarshan3.51Database System Concepts

Aggregate Operation Aggregate Operation –– ExampleExample

Relation r:
A B C

7
7
3

10

α
α
β
β

α
β
β
β

sum-Cg sum(c) (r)
27

©Silberschatz, Korth and Sudarshan3.52Database System Concepts

Aggregate Operation Aggregate Operation –– ExampleExample

Relation account grouped by branch-name:

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name g sum(balance) (account)

branch-name balance
Perryridge
Brighton
Redwood

1300
1500
700

©Silberschatz, Korth and Sudarshan3.53Database System Concepts

Aggregate Functions (Cont.)Aggregate Functions (Cont.)

Result of aggregation does not have a name
Can use rename operation to give it a name
For convenience, we permit renaming as part of aggregate
operation

branch-name g sum(balance) as sum-balance (account)

©Silberschatz, Korth and Sudarshan3.54Database System Concepts

Outer JoinOuter Join

An extension of the join operation that avoids loss of information.
Computes the join and then adds tuples form one relation that do
not match tuples in the other relation to the result of the join.
Uses null values:

null signifies that the value is unknown or does not exist
All comparisons involving null are (roughly speaking) false by
definition.

Will study precise meaning of comparisons with nulls later

©Silberschatz, Korth and Sudarshan3.55Database System Concepts

Outer Join Outer Join –– ExampleExample

Relation loan

3000
4000
1700

loan-number amount
L-170
L-230
L-260

branch-name
Downtown
Redwood
Perryridge

Relation borrower

customer-name loan-number
Jones
Smith
Hayes

L-170
L-230
L-155

©Silberschatz, Korth and Sudarshan3.56Database System Concepts

Outer Join Outer Join –– ExampleExample

Inner Join

loan Borrower

loan-number amount

L-170
L-230

3000
4000

customer-name

Jones
Smith

branch-name

Downtown
Redwood

Left Outer Join
loan Borrower

Jones
Smith
null

loan-number amount
L-170
L-230
L-260

3000
4000
1700

customer-namebranch-name
Downtown
Redwood
Perryridge

©Silberschatz, Korth and Sudarshan3.57Database System Concepts

Outer Join Outer Join –– ExampleExample

Right Outer Join
loan borrower

loan-number amount
L-170
L-230
L-155

3000
4000
null

customer-name
Jones
Smith
Hayes

branch-name
Downtown
Redwood
null

loan borrower
Full Outer Join

loan-number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name

Jones
Smith
null
Hayes

branch-name

Downtown
Redwood
Perryridge
null

©Silberschatz, Korth and Sudarshan3.58Database System Concepts

Null ValuesNull Values

It is possible for tuples to have a null value, denoted by null, for
some of their attributes
null signifies an unknown value or that a value does not exist.
The result of any arithmetic expression involving null is null.
Aggregate functions simply ignore null values

Is an arbitrary decision. Could have returned null as result instead.
We follow the semantics of SQL in its handling of null values

For duplicate elimination and grouping, null is treated like any
other value, and two nulls are assumed to be the same

Alternative: assume each null is different from each other
Both are arbitrary decisions, so we simply follow SQL

©Silberschatz, Korth and Sudarshan3.59Database System Concepts

Null ValuesNull Values
Comparisons with null values return the special truth value
unknown

If false was used instead of unknown, then not (A < 5)
would not be equivalent to A >= 5

Three-valued logic using the truth value unknown:
OR: (unknown or true) = true,

(unknown or false) = unknown
(unknown or unknown) = unknown

AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

NOT: (not unknown) = unknown
In SQL “P is unknown” evaluates to true if predicate P evaluates
to unknown

Result of select predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.60Database System Concepts

Modification of the DatabaseModification of the Database

The content of the database may be modified using the following
operations:

Deletion
Insertion
Updating

All these operations are expressed using the assignment
operator.

©Silberschatz, Korth and Sudarshan3.61Database System Concepts

DeletionDeletion

A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.
Can delete only whole tuples; cannot delete values on only
particular attributes
A deletion is expressed in relational algebra by:

r ← r – E
where r is a relation and E is a relational algebra query.

©Silberschatz, Korth and Sudarshan3.62Database System Concepts

Deletion ExamplesDeletion Examples

Delete all account records in the Perryridge branch.

account ← account – σ branch-name = “Perryridge” (account)

Delete all loan records with amount in the range of 0 to 50

loan ← loan – σ amount ≥ 0 and amount ≤ 50 (loan)

Delete all accounts at branches located in Needham.

r1 ← σ branch-city = “Needham” (account branch)

r2 ← ∏branch-name, account-number, balance (r1)

r3 ← ∏ customer-name, account-number (r2 depositor)
account ← account – r2

depositor ← depositor – r3

©Silberschatz, Korth and Sudarshan3.63Database System Concepts

InsertionInsertion

To insert data into a relation, we either:
specify a tuple to be inserted
write a query whose result is a set of tuples to be inserted

in relational algebra, an insertion is expressed by:
r ← r ∪ E

where r is a relation and E is a relational algebra expression.
The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

©Silberschatz, Korth and Sudarshan3.64Database System Concepts

Insertion ExamplesInsertion Examples

Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account ← account ∪ {(“Perryridge”, A-973, 1200)}
depositor ← depositor ∪ {(“Smith”, A-973)}

Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve
as the account number for the new savings account.

r1 ← (σbranch-name = “Perryridge” (borrower loan))
account ← account ∪ ∏branch-name, account-number,200 (r1)
depositor ← depositor ∪ ∏customer-name, loan-number(r1)

©Silberschatz, Korth and Sudarshan3.65Database System Concepts

UpdatingUpdating

A mechanism to change a value in a tuple without charging all
values in the tuple
Use the generalized projection operator to do this task

r ← ∏ F1, F2, …, FI, (r)
Each Fi is either

the ith attribute of r, if the ith attribute is not updated, or,
if the attribute is to be updated Fi is an expression, involving only
constants and the attributes of r, which gives the new value for the
attribute

©Silberschatz, Korth and Sudarshan3.66Database System Concepts

Update ExamplesUpdate Examples
Make interest payments by increasing all balances by 5 percent.

account ← ∏ AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

Pay all accounts with balances over $10,000 6 percent interest
and pay all others 5 percent

account ← ∏ AN, BN, BAL * 1.06 (σ BAL > 10000 (account))
∪ ∏AN, BN, BAL * 1.05 (σBAL ≤ 10000 (account))

©Silberschatz, Korth and Sudarshan3.67Database System Concepts

ViewsViews
In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the database.)
Consider a person who needs to know a customer’s loan number
but has no need to see the loan amount. This person should see
a relation described, in the relational algebra, by

∏customer-name, loan-number (borrower loan)
Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan3.68Database System Concepts

View DefinitionView Definition

A view is defined using the create view statement which has the
form

create view v as <query expression

where <query expression> is any legal relational algebra query
expression. The view name is represented by v.
Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.
View definition is not the same as creating a new relation by
evaluating the query expression

Rather, a view definition causes the saving of an expression; the
expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan3.69Database System Concepts

View ExamplesView Examples

Consider the view (named all-customer) consisting of branches
and their customers.

create view all-customer as
∏branch-name, customer-name (depositor account)

∪ ∏branch-name, customer-name (borrower loan)

We can find all customers of the Perryridge branch by writing:

∏customer-name
(σbranch-name = “Perryridge” (all-customer))

©Silberschatz, Korth and Sudarshan3.70Database System Concepts

Updates Through ViewUpdates Through View

Database modifications expressed as views must be translated
to modifications of the actual relations in the database.
Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person, branch-
loan, is defined as:

create view branch-loan as
∏branch-name, loan-number (loan)

Since we allow a view name to appear wherever a relation name
is allowed, the person may write:

branch-loan ← branch-loan ∪ {(“Perryridge”, L-37)}

©Silberschatz, Korth and Sudarshan3.71Database System Concepts

Updates Through Views (Cont.)Updates Through Views (Cont.)

The previous insertion must be represented by an insertion into the
actual relation loan from which the view branch-loan is constructed.
An insertion into loan requires a value for amount. The insertion
can be dealt with by either.

rejecting the insertion and returning an error message to the user.
inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

Some updates through views are impossible to translate into
database relation updates

create view v as σbranch-name = “Perryridge” (account))
v ← v ∪ (L-99, Downtown, 23)

Others cannot be translated uniquely
all-customer ← all-customer ∪ {(“Perryridge”, “John”)}

Have to choose loan or account, and
create a new loan/account number!

©Silberschatz, Korth and Sudarshan3.72Database System Concepts

Views Defined Using Other ViewsViews Defined Using Other Views

One view may be used in the expression defining another view
A view relation v1 is said to depend directly on a view relation v2
if v2 is used in the expression defining v1

A view relation v1 is said to depend on view relation v2 if either v1
depends directly to v2 or there is a path of dependencies from
v1 to v2

A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan3.73Database System Concepts

View ExpansionView Expansion

A way to define the meaning of views defined in terms of other
views.
Let view v1 be defined by an expression e1 that may itself contain
uses of view relations.
View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1
Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

As long as the view definitions are not recursive, this loop will
terminate

©Silberschatz, Korth and Sudarshan3.74Database System Concepts

Tuple Relational CalculusTuple Relational Calculus

A nonprocedural query language, where each query is of the form
{t | P (t) }

It is the set of all tuples t such that predicate P is true for t
t is a tuple variable, t[A] denotes the value of tuple t on attribute A
t ∈ r denotes that tuple t is in relation r
P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.75Database System Concepts

Predicate Calculus FormulaPredicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., <, ≤, =, ≠, >, ≥)
3. Set of connectives: and (∧), or (v)‚ not (¬)
4. Implication (⇒): x ⇒ y, if x if true, then y is true

x ⇒ y ≡ ¬x v y
5. Set of quantifiers:

∃ t ∈ r (Q(t)) ≡ ”there exists” a tuple in t in relation r
such that predicate Q(t) is true

∀t ∈ r (Q(t)) ≡ Q is true “for all” tuples t in relation r

©Silberschatz, Korth and Sudarshan3.76Database System Concepts

Banking ExampleBanking Example

branch (branch-name, branch-city, assets)
customer (customer-name, customer-street, customer-city)
account (account-number, branch-name, balance)
loan (loan-number, branch-name, amount)
depositor (customer-name, account-number)
borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan3.77Database System Concepts

Example QueriesExample Queries

Find the loan-number, branch-name, and amount for loans of
over $1200

{t | t ∈ loan ∧ t [amount] > 1200}

Find the loan number for each loan of an amount greater than $1200

{t | ∃ s ∈ loan (t[loan-number] = s[loan-number] ∧ s [amount] > 1200)}

Notice that a relation on schema [loan-number] is implicitly defined
by the query

©Silberschatz, Korth and Sudarshan3.78Database System Concepts

Example QueriesExample Queries

Find the names of all customers having a loan, an account, or
both at the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
∨ ∃u ∈ depositor(t[customer-name] = u[customer-name])

Find the names of all customers who have a loan and an account
at the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
∧ ∃u ∈ depositor(t[customer-name] = u[customer-name])

©Silberschatz, Korth and Sudarshan3.79Database System Concepts

Example QueriesExample Queries

Find the names of all customers having a loan at the Perryridge
branch

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
∧ ∃u ∈ loan(u[branch-name] = “Perryridge”

∧ u[loan-number] = s[loan-number]))}

Find the names of all customers who have a loan at the
Perryridge branch, but no account at any branch of the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
∧ ∃u ∈ loan(u[branch-name] = “Perryridge”

∧ u[loan-number] = s[loan-number]))
∧ not ∃v ∈ depositor (v[customer-name] =

t[customer-name]) }

©Silberschatz, Korth and Sudarshan3.80Database System Concepts

Example QueriesExample Queries

Find the names of all customers having a loan from the
Perryridge branch, and the cities they live in

{t | ∃s ∈ loan(s[branch-name] = “Perryridge”
∧ ∃u ∈ borrower (u[loan-number] = s[loan-number]

∧ t [customer-name] = u[customer-name])
∧ ∃ v ∈ customer (u[customer-name] = v[customer-name]

∧ t[customer-city] = v[customer-city])))}

©Silberschatz, Korth and Sudarshan3.81Database System Concepts

Example QueriesExample Queries

Find the names of all customers who have an account at all
branches located in Brooklyn:

{t | ∃ c ∈ customer (t[customer.name] = c[customer-name]) ∧
∀ s ∈ branch(s[branch-city] = “Brooklyn” ⇒

∃ u ∈ account (s[branch-name] = u[branch-name]
∧ ∃ s ∈ depositor (t[customer-name] = s[customer-name]

∧ s[account-number] = u[account-number])))}

©Silberschatz, Korth and Sudarshan3.82Database System Concepts

Safety of ExpressionsSafety of Expressions

It is possible to write tuple calculus expressions that generate
infinite relations.
For example, {t | ¬ t ∈ r} results in an infinite relation if the
domain of any attribute of relation r is infinite
To guard against the problem, we restrict the set of allowable
expressions to safe expressions.
An expression {t | P(t)} in the tuple relational calculus is safe if
every component of t appears in one of the relations, tuples, or
constants that appear in P

NOTE: this is more than just a syntax condition.

E.g. { t | t[A]=5 ∨ true } is not safe --- it defines an infinite set with
attribute values that do not appear in any relation or tuples or
constants in P.

©Silberschatz, Korth and Sudarshan3.83Database System Concepts

Domain Relational CalculusDomain Relational Calculus

A nonprocedural query language equivalent in power to the tuple
relational calculus
Each query is an expression of the form:

{ < x1, x2, …, xn > | P(x1, x2, …, xn)}

x1, x2, …, xn represent domain variables
P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.84Database System Concepts

Example QueriesExample Queries

Find the loan-number, branch-name, and amount for loans of over
$1200

{< l, b, a > | < l, b, a > ∈ loan ∧ a > 1200}

Find the names of all customers who have a loan of over $1200

{< c > | ∃ l, b, a (< c, l > ∈ borrower ∧ < l, b, a > ∈ loan ∧ a > 1200)}

Find the names of all customers who have a loan from the
Perryridge branch and the loan amount:

{< c, a > | ∃ l (< c, l > ∈ borrower ∧ ∃b(< l, b, a > ∈ loan ∧

b = “Perryridge”))}
or {< c, a > | ∃ l (< c, l > ∈ borrower ∧ < l, “Perryridge”, a > ∈ loan)}

©Silberschatz, Korth and Sudarshan3.85Database System Concepts

Example QueriesExample Queries

Find the names of all customers having a loan, an account, or
both at the Perryridge branch:

{< c > | ∃ l ({< c, l > ∈ borrower
∧ ∃ b,a(< l, b, a > ∈ loan ∧ b = “Perryridge”))

∨ ∃ a(< c, a > ∈ depositor
∧ ∃ b,n(< a, b, n > ∈ account ∧ b = “Perryridge”))}

Find the names of all customers who have an account at all
branches located in Brooklyn:

{< c > | ∃ s, n (< c, s, n > ∈ customer) ∧
∀ x,y,z(< x, y, z > ∈ branch ∧ y = “Brooklyn”) ⇒

∃ a,b(< x, y, z > ∈ account ∧ < c,a > ∈ depositor)}

©Silberschatz, Korth and Sudarshan3.86Database System Concepts

Safety of ExpressionsSafety of Expressions

{ < x1, x2, …, xn > | P(x1, x2, …, xn)}

is safe if all of the following hold:
1.All values that appear in tuples of the expression are values

from dom(P) (that is, the values appear either in P or in a tuple
of a relation mentioned in P).

2.For every “there exists” subformula of the form ∃ x (P1(x)), the
subformula is true if and only if there is a value of x in dom(P1)
such that P1(x) is true.

3. For every “for all” subformula of the form ∀x (P1 (x)), the
subformula is true if and only if P1(x) is true for all values x
from dom (P1).

End of Chapter 3End of Chapter 3

©Silberschatz, Korth and Sudarshan3.88Database System Concepts

Result of Result of σσ branchbranch--name = name = ““PerryridgePerryridge”” ((loanloan))

©Silberschatz, Korth and Sudarshan3.89Database System Concepts

Loan Number and the Amount of the LoanLoan Number and the Amount of the Loan

©Silberschatz, Korth and Sudarshan3.90Database System Concepts

Names of All Customers Who Have Names of All Customers Who Have
Either a Loan or an AccountEither a Loan or an Account

©Silberschatz, Korth and Sudarshan3.91Database System Concepts

Customers With An Account But No LoanCustomers With An Account But No Loan

©Silberschatz, Korth and Sudarshan3.92Database System Concepts

Result of Result of borrower borrower ×× loanloan

©Silberschatz, Korth and Sudarshan3.93Database System Concepts

Result of Result of σσ branchbranch--name = name = ““PerryridgePerryridge”” ((borrower borrower ×× loan)loan)

©Silberschatz, Korth and Sudarshan3.94Database System Concepts

Result of Result of ΠΠcustomercustomer--namename

©Silberschatz, Korth and Sudarshan3.95Database System Concepts

Result of the SubexpressionResult of the Subexpression

©Silberschatz, Korth and Sudarshan3.96Database System Concepts

Largest Account Balance in the BankLargest Account Balance in the Bank

©Silberschatz, Korth and Sudarshan3.97Database System Concepts

Customers Who Live on the Same Street and In the Customers Who Live on the Same Street and In the
Same City as SmithSame City as Smith

©Silberschatz, Korth and Sudarshan3.98Database System Concepts

Customers With Both an Account and a Loan Customers With Both an Account and a Loan
at the Bankat the Bank

©Silberschatz, Korth and Sudarshan3.99Database System Concepts

Result of Result of ΠΠcustomercustomer--name, loanname, loan--number, amountnumber, amount
((borrower loan)borrower loan)

©Silberschatz, Korth and Sudarshan3.100Database System Concepts

Result of Result of ΠΠbranchbranch--namename((σσcustomercustomer--city = city =

““HarrisonHarrison””((customercustomer account depositor))account depositor))

©Silberschatz, Korth and Sudarshan3.101Database System Concepts

Result of Result of ΠΠbranchbranch--namename((σσbranchbranch--city = city =
““BrooklynBrooklyn””(branch))(branch))

©Silberschatz, Korth and Sudarshan3.102Database System Concepts

Result of Result of ΠΠcustomercustomer--name, branchname, branch--namename((depositor account)depositor account)

©Silberschatz, Korth and Sudarshan3.103Database System Concepts

The The creditcredit--infoinfo RelationRelation

©Silberschatz, Korth and Sudarshan3.104Database System Concepts

Result of Result of ΠΠcustomercustomer--name, (limit name, (limit –– creditcredit--balance) balance) as as

creditcredit--availableavailable(credit(credit--info).info).

©Silberschatz, Korth and Sudarshan3.105Database System Concepts

The The ptpt--works works RelationRelation

©Silberschatz, Korth and Sudarshan3.106Database System Concepts

The The ptpt--works works Relation After GroupingRelation After Grouping

©Silberschatz, Korth and Sudarshan3.107Database System Concepts

Result of Result of branchbranch--name name ςς sumsum(salary) (salary) (pt(pt--works)works)

©Silberschatz, Korth and Sudarshan3.108Database System Concepts

Result of Result of branchbranch--name name ςς sumsum salary, salary, max(max(salarysalary) as) as

maxmax--salary salary (pt(pt--works)works)

©Silberschatz, Korth and Sudarshan3.109Database System Concepts

The The employeeemployee and and ftft--works works Relations Relations

©Silberschatz, Korth and Sudarshan3.110Database System Concepts

The Result of The Result of employee ftemployee ft--worksworks

©Silberschatz, Korth and Sudarshan3.111Database System Concepts

The Result of The Result of employeeemployee ftft--worksworks

©Silberschatz, Korth and Sudarshan3.112Database System Concepts

Result of Result of employee ftemployee ft--works works

©Silberschatz, Korth and Sudarshan3.113Database System Concepts

Result of Result of employee ftemployee ft--worksworks

©Silberschatz, Korth and Sudarshan3.114Database System Concepts

Tuples Inserted Into Tuples Inserted Into loan loan and and borrowerborrower

©Silberschatz, Korth and Sudarshan3.115Database System Concepts

Names of All Customers Who Have a Names of All Customers Who Have a
Loan at the Perryridge BranchLoan at the Perryridge Branch

©Silberschatz, Korth and Sudarshan3.116Database System Concepts

EE--R DiagramR Diagram

©Silberschatz, Korth and Sudarshan3.117Database System Concepts

The The branchbranch RelationRelation

©Silberschatz, Korth and Sudarshan3.118Database System Concepts

The The loan loan RelationRelation

©Silberschatz, Korth and Sudarshan3.119Database System Concepts

The The borrowerborrower RelationRelation

	Chapter 3: Relational Model
	Example of a Relation
	Basic Structure
	Attribute Types
	Relation Schema
	Relation Instance
	Relations are Unordered
	Database
	The customer Relation
	The depositor Relation
	E-R Diagram for the Banking Enterprise
	Keys
	Determining Keys from E-R Sets
	Schema Diagram for the Banking Enterprise
	Query Languages
	Relational Algebra
	Select Operation – Example
	Select Operation
	Project Operation – Example
	Project Operation
	Union Operation – Example
	Union Operation
	Set Difference Operation – Example
	Set Difference Operation
	Cartesian-Product Operation-Example
	Cartesian-Product Operation
	Composition of Operations
	Rename Operation
	Banking Example
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Formal Definition
	Additional Operations
	Set-Intersection Operation
	Set-Intersection Operation - Example
	Natural-Join Operation
	Natural Join Operation – Example
	Division Operation
	Division Operation – Example
	Another Division Example
	Division Operation (Cont.)
	Assignment Operation
	Example Queries
	Example Queries
	Extended Relational-Algebra-Operations
	Generalized Projection
	Aggregate Functions and Operations
	Aggregate Operation – Example
	Aggregate Operation – Example
	Aggregate Functions (Cont.)
	Outer Join
	Outer Join – Example
	Outer Join – Example
	Outer Join – Example
	Null Values
	Null Values
	Modification of the Database
	Deletion
	Deletion Examples
	Insertion
	Insertion Examples
	Updating
	Update Examples
	Views
	View Definition
	View Examples
	Updates Through View
	Updates Through Views (Cont.)
	Views Defined Using Other Views
	View Expansion
	Tuple Relational Calculus
	Predicate Calculus Formula
	Banking Example
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Safety of Expressions
	Domain Relational Calculus
	Example Queries
	Example Queries
	Safety of Expressions
	End of Chapter 3
	Result of ? branch-name = “Perryridge” (loan)
	Loan Number and the Amount of the Loan
	Names of All Customers Who Have Either a Loan or an Account
	Customers With An Account But No Loan
	Result of borrower ? loan
	Result of ? branch-name = “Perryridge” (borrower ? loan)
	Result of ?customer-name
	Result of the Subexpression
	Largest Account Balance in the Bank
	Customers Who Live on the Same Street and In the Same City as Smith
	Customers With Both an Account and a Loan at the Bank
	Result of ?customer-name, loan-number, amount (borrower loan)
	Result of ?branch-name(?customer-city = “Harrison”(customer account depositor))
	Result of ?branch-name(?branch-city = “Brooklyn”(branch))
	Result of ?customer-name, branch-name(depositor account)
	The credit-info Relation
	Result of ?customer-name, (limit – credit-balance) as credit-available(credit-info).
	The pt-works Relation
	The pt-works Relation After Grouping
	Result of branch-name ? sum(salary) (pt-works)
	Result of branch-name ? sum salary, max(salary) as max-salary (pt-works)
	The employee and ft-works Relations
	The Result of employee ft-works
	The Result of employee ft-works
	Result of employee ft-works
	Result of employee ft-works
	Tuples Inserted Into loan and borrower
	Names of All Customers Who Have a Loan at the Perryridge Branch
	E-R Diagram
	The branch Relation
	The loan Relation
	The borrower Relation

