[]

Chapter 4:

Basic Structure

Set Operations
Aggregate Functions
Null Values

SQL

L]

Schema Used in Examples

branch account depositor customer
branch-name account—number customer—name > customer-name
bmriéh—cie‘y” p= branch—name - account-number cusfomer—streef
assels balance customer—city

loan

borrower

loan—number _
branch-name
amount

customer—name
loan—number

‘ Basic Structure

B SQL is based on set and relational operations with certain
modifications and enhancements

m A typical SQL query has the form:
select A, A,, ..., A,
fromry, ry, .oy Iy

‘ The select Clause

B The select clause list the attributes desired in the result of a
query
corresponds to the projection operation of the relational algebra
m E.g. find the names of all branches in the loan relation

select branch-name
from loan

‘ The select Clause (Cont.)

B SQL allows duplicates in relations as well as in query results.

m To force the elimination of duplicates, insert the keyword distinct
after select.

B Find the names of all branches in the loan relations, and remove
duplicates

‘ The select Clause (Cont.)

B An asterisk in the select clause denotes “all attributes”

select *
from loan

B The select clause can contain arithmetic expressions involving
the operation, +, —, *, and /, and operating on constants or

‘ The where Clause

B The where clause specifies conditions that the result must
satisfy

 corresponds to the selection predicate of the relational algebra.
® To find all loan number for loans made at the Perryridge branch

NITN 10an amoun Jrea [1Adll o

‘ The where Clause (Cont.)

B SQL includes a between comparison operator

® E.g. Find the loan humber of those loans with loan amounts
between $90,000 and $100,000 (that is, >$90,000 and <$100,000)

‘ The from Clause

® The from clause lists the relations involved in the query
corresponds to the Cartesian product operation of the relational algebra.

B Find the Cartesian product borrower x loan
select *
from borrower, loan

‘ The Rename Operation

B The SQL allows renaming relations and attributes using the as
clause:
old-name as new-name

Tuple Variables

B Tuple variables are defined in the from clause via the use of the
as clause.

B Find the customer names and their loan numbers for all
customers having a loan at some branch.

select customer-name, T.loan-number, S.amount

String Operations

B SQL includes a string-matching operator for comparisons on character
strings. Patterns are described using two special characters:

 percent (%). The % character matches any substring.
underscore (). The _ character matches any character.

B Find the names of all customers whose street includes the substring
“Main”.

‘ Ordering the Display of Tuples

m List in alphabetic order the names of all customers having a loan
in Perryridge branch

select distinct customer-name
from borrower, loan

‘ Duplicates

® In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

m Multiset versions of some of the relational algebra operators —
given multiset relations r; and r,:

ies of tup

1. Opy(ry): If there are c, cop let, inr,, and t, satisfies

‘ Duplicates (Cont.)

B Example: Suppose multiset relations r, (A, B) and r, (C)
are as follows:

n={1a) 2a} r,={2), @))}
B Then Ig(r;) would be {(a), (a)}, while ITg(r,) x r, would be

‘ Set Operations

B The set operations union, intersect, and except operate on

relations and correspond to the relational algebra operations
U, N, —.

B Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the corresponding

multiset

‘ Set Operations

B Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
union
(select customer-name from borrower)

‘ Aggregate Functions

B These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value
min: minimum value

‘ Aggregate Functions (Cont.)

B Find the average account balance at the Perryridge branch.

select avg (balance)
from account
where branch-name = ‘Perryridge’

‘ Aggregate Functions — Group By

® Find the number of depositors for each branch.

select branch-name, count (distinct customer-name)
from depositor, account

'&ggregate Functions — Having Clause

® Find the names of all branches where the average account
balance is more than $1,200.

select branch-name, avg (balance)
from account
group by branch-name

‘ Null Values

B |t is possible for tuples to have a null value, denoted by null, for
some of their attributes

® null signifies an unknown value or that a value does not exist.
B The predicate is null can be used to check for null values.
¥ E.g. Find all loan number which appear in the loan relation with

‘ Null Values and Three Valued Logic

® Any comparison with null returns unknown
¥ E.g. 5<null or null<>null or null=nul
B Three-valued logic using the truth value unknown:
? OR: (unknown or true) = true, (unknown or false) = unknown

‘ Null Values and Aggregates

m Total all loan amounts

select sum (amount)
from loan

¥ Above statement ignores null amounts

‘ Nested Subqueries

B SQL provides a mechanism for the nesting of subqueries.

B A subquery is a select-from-where expression that is nested
within another query.

m A common use of subqueries is to perform tests for set

‘ Example Query

® Find all customers who have both an account and a loan at the
bank.

select distinct customer-name
from borrower

‘ Example Query

B Find all customers who have both an account and a loan at the
Perryridge branch

select distinct customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number and

= ke

‘ Set Comparison

® Find all branches that have greater assets than some branch
located in Brooklyn.

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and

[]

(5< some

Definition of Some Clause

B F <comp>somer< dter s.t (F<comp>t)
Where <comp> can be: <, <,>, =, #

) = true

B 23 23 EEE

L]

Definition of all Clause

B F<comp>allre Viter (F<comp>t)

(5< all) = false

o= Rolfeb ool

‘ Example Query

® Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch-name

‘ Test for Empty Relations

B The exists construct returns the value true if the argument
subquery is nonempty.

B exists rerz@

AR

‘ Example Query

B Find all customers who have an account at all branches located
in Brooklyn.

select distinct S.customer-name
from depositor as S
where not exists (

‘Test for Absence of Duplicate Tuples

B The unique construct tests whether a subquery has any
duplicate tuples in its result.

B Find all customers who have at most one account at the

‘ Example Query

B Find all customers who have at least two accounts at the
Perryridge branch.

select distinct T.customer-name
from depositor T

‘ Views

B Provide a mechanism to hide certain data from the view of
certain users. To create a view we use the command:

create view v as <query expression>

‘ Example Queries

m A view consisting of branches and their customers

create view all-customer as
(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)

‘ Derived Relations

B Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch-name, avg-balance
from (select branch-name, avg (balance)
from account

‘ With Clause

m With clause allows views to be defined locally to a query, rather

than globally. Analogous to procedures in a programming
language.

® Find all accounts with the maximum balance

‘ Complex Query using With Clause

®m Find all branches where the total account deposit is greater than
the average of the total account deposits at all branches.

with branch-total (branch-name, value) as
select branch-name, sum (balance)

‘Modification of the Database — Deletion

m Delete all account records at the Perryridge branch

delete from account
where branch-name = ‘Perryridge’

B Delete all accounts at every branch located in Needham city.
delete from account

‘ Example Query

m Delete the record of all accounts with balances below the
average at the bank.

delete from account
where balance < (select avg (balance)

‘Modification of the Database — Insertion

® Add a new tuple to account

insert into account
values (‘A-9732’, ‘Perryridge’,1200)
or equivalently

insert into account (branch-name, balance, account-number

‘Modification of the Database — Insertion

B Provide as a gift for all loan customers of the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account

insert into account
select loan-number, branch-name, 200
from loan

‘Modification of the Database — Updates

B Increase all accounts with balances over $10,000 by 6%, all
other accounts receive 5%.

P Write two update statements:

update account

‘ Case Statement for Conditional Updates

B Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.

update account

Update of a View

m Create a view of all loan data in loan relation, hiding the amount
attribute

create view branch-loan as
select branch-name, loan-number
from loan

m Add a new tuple to branch-loan

Transactions

B A transaction is a sequence of queries and update statements executed
as a single unit

 Transactions are started implicitly and terminated by one of

commit work: makes all updates of the transaction permanent in the
database

rollback work: undoes all updates performed by the transaction.

‘ Transactions (Cont.)

B |n most database systems, each SQL statement that executes
successfully is automatically committed.

¥ Each transaction would then consist of only a single statement

¥ Automatic commit can usually be turned off, allowing multi-
statement transactions, but how to do so depends on the database
system

‘ Joined Relations

®m Join operations take two relations and return as a result another
relation.

B These additional operations are typically used as subquery
expressions in the from clause

® Join condition — defines which tuples in the two relations match,

Join Types Join Conditions

inner join natural

left outer join on <predicate>
right outer join using (A, A, ..., A)
full outer join

<~ Joined Relations — Datasets for Examples
\/

B Relation loan

| loan-number | branch-name | amount |
L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

B Relation borrower

customer-name | loan-number
Jones L-170
Smith L-230
Hayes L-155

B Note: borrower information missing for L-260 and loan = =
information missing for L-155 :

Database System Concepts 4.51

~ = =
_ Joined Relations — Examples
B [oan inner join borrower on
loan.loan-number = borrower.loan-number
loan-number branch-name amount customer-name | loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
B |oan left outer join borrower on
loan.loan-number = borrower.loan-number
loan-number branch-name amount customer-name | loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null

Database System Concepts

‘ Joined Relations — Examples

B |oan natural inner join borrower

loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

loan-number branch-name m customer-name

L-170 Downtown

L-230 Redwood
L-155 null

‘ Joined Relations — Examples

m loan full outer join borrower using (loan-number)

| loan-number | branch-name | amount |customer-name|
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null

null

~

Data Definition Language (DDL)

~

Allows the specification of not only a set of relations but also
information about each relation, including:

B The schema for each relation.

The domain of values associated with each attribute.
Integrity constraints

The set of indices to be maintained for each relations.
Security and authorization information for each relation.

The physical storage structure of each relation on disk.

Database System Concepts 4.55

A Domain Types in SQL

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximum
length n.

int. Integer (a finite subset of the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer
domain type).

® numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

m real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

m float(n). Floating point number, with user-specified precision of at least n
digits.

® Null values are allowed in all the domain types. Declaring an attrlbute to be
not null prohibits null values for that attribute.

®m create domain construct in SQL-92 creates user-defined domain:ty
create domain person-name char(20) not null

Database System Concepts 4.56

‘ Date/Time Types in SQL (Cont.)

m date. Dates, containing a (4 digit) year, month and date
? E.g. date ‘2001-7-27

® time. Time of day, in hours, minutes and seconds.
¥ E.g. time '09:00:30’ time '09:00:30.75’

m timestamp: date plus time of day

‘ Create Table Construct

® An SQL relation is defined using the create table
command:
create table r (A, D,, A, D,, ..., A, D,,
(integrity-constraint,),

_Integrity Constraints in Create Table

® not null
Em primary key (A, ..., A,)
m check (P), where P is a predicate

Example: Declare branch-name as the primary key for
branch and ensure that the values of assets are non-
negative.
create table branch

(branch-name char(15),

branch-city char(30)

assets integer,

primary key (branch-name),

check (assets >= 0))

primary key declaration on an attribute automatically
ensures not null in SQL-92 onwards, needs to be
explicitly stated in SQL-89

Database System Concepts 4.59

~

_ Drop and Alter Table Constructs

® The drop table command deletes all information about the
dropped relation from the database.

B The alter table command is used to add attributes to an
existing relation.

alter tabler add A D

where A is the name of the attribute to be added to relation r
and D is the domain of A.

7 All tuples in the relation are assigned null as the value for the
new attribute.

B The alter table command can also be used to drop attributes
of a relation

alter table r drop A Y|

where A is the name of an attribute of relation r 7 *’“t%«:?

Database System Concepts 4.60 ©Silberschatz, Ko

A Embedded SQL

B The SQL standard defines embeddings of SQL in a variety of
programming languages such as Pascal, PL/I, Fortran, C, and
Cobol.

B A language to which SQL queries are embedded is referred to as
a host language, and the SQL structures permitted in the host
language comprise embedded SQL.

B The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

B EXEC SQL statement is used to identify embedded SQL request
to the preprocessor

EXEC SQL <embedded SQL statement > END-EXEC

#SQL{...}:

Database System Concepts 4.61 ©Silberschatz, Ko

A Example Query

From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

m Specify the query in SQL and declare a cursor for it
EXEC SQL

declare c cursor for

select customer-name, customer-city

from depositor, customer, account

where depositor.customer-name = customer.customer-name
and depositor account-number = account.account-number
and account.balance > :amount

END-EXEC

Database System Concepts 4.62

‘ Embedded SQL (Cont.)

B The open statement causes the query to be evaluated
EXEC SQL open ¢ END-EXEC

m The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch cinto :cn, :cc END-EXEC

‘ Updates Through Cursors

m Can update tuples fetched by cursor by declaring that the cursor
is for update

declare c cursor for
select *
from account

‘ Dynamic SQL

m Allows programs to construct and submit SQL queries at run
time.

m Example of the use of dynamic SQL from within a C program.

[) obBC

B Open DataBase Connectivity(ODBC) standard

? standard for application program to communicate with a database
server.

¥ application program interface (API) to

‘ ODBC (Cont.)

m Each database system supporting ODBC provides a "driver" library that
must be linked with the client program.

® When client program makes an ODBC API call, the code in the library
communicates with the server to carry out the requested action, and
fetch results.

‘ ODBC Code

® int ODBCexample()
{
RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */

‘ ODBC Code (Cont.)

B Program sends SQL commands to the database by using SQLExecDirect

B Result tuples are fetched using SQLFetch()
® SQLBindCol() binds C language variables to attributes of the query result

When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

Arguments to SQLBindCol()

‘ ODBC Code (Cont.)

B Main body of program

char branchname[80];
float balance;
int lenOutl, lenOut2;
HSTMT stmt;

SQLAllocStmt(conn, &stmt);
char * sglquery = "select branch_name, sum (balance

‘ More ODBC Features

B Prepared Statement
? SQL statement prepared: compiled at the database
? Can have placeholders: E.g. insert into account values(?,?,?)
? Repeatedly executed with actual values for the placeholders

B Metadata features
P

‘ ODBC Conformance Levels

m Conformance levels specify subsets of the functionality defined
by the standard.

¥ Core
Level 1 requires support for metadata querying

¥ Level 2 requires ability to send and retrieve arrays of parameter

[) JDBC

m JDBC is a Java API for communicating with database systems
supporting SQL

m JDBC supports a variety of features for querying and updating
data, and for retrieving query results

m JDBC also supports metadata retrieval, such as querying about

‘ JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)
{

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin: @aura.bell-labs.com:2000:bankdb", userid,

‘ JDBC Code (Cont.)

m Update to database

try {

stmt.executeUpdate("insert into account values
(‘A-9732', 'Perryridge’, 1200)");

‘ JDBC Code Details

B Getting result fields:

¥ rs.getString(“branchname”) and rs.getString(1) equivalent if
branchname is the first argument of select result.

m Dealing with Null values

‘ Prepared Statement

B Prepared statement allows queries to be compiled and executed
multiple times with different arguments

PreparedStatement pStmt = conn.prepareStatement(

“insert into account values(?,?,?)");
pStmt.setString(1, "A-9732");

pStmt.setString(2, "Perryridge");

‘ Other SQL Features

B SQL sessions
? client connects to an SQL server, establishing a session
¥ executes a series of statements
disconnects the session
P

can commit or rollback the work carried out in the session

‘Schemas, Catalogs, and Environments

B Three-level hierarchy for naming relations.
? Database contains multiple catalogs
each catalog can contain multiple schemas

¥ SQL objects such as relations and views are contained within a
schema

Procedural Extensions and Stored
Procedures

B SQL provides a module language

¥ permits definition of procedures in SQL, with if-then-else statements,
for and while loops, etc.

¥ more in Chapter 9
m Stored Procedures

‘ Transactions in JDBC

m As with ODBC, each statement gets committed automatically in
JDBC

B To turn off auto commit use
conn.setAutoCommit(false);

B To commit or abort transactions use

‘?rocedure and Function Calls in JDBC

m JDBC provides a class CallableStatement which allows SQL stored
procedures/functions to be invoked.

CallableStatement cs1 = conn.prepareCall(“{call proc (?,?)}") ;
CallableStatement cs2 = conn.prepareCall(“{? = call func (?,?)}");

‘ Result Set MetaData

B The class ResultSetMetaData provides information about all the
columns of the ResultSet.

B |nstance of this class is obtained by getMetaData() function of
ResultSet.

B Provides Functions for

getting

number of columns, column name,

‘ Database Meta Data

m E.g. to print column names and types of a relation
DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getColumns(null, “BANK-DB”, “account”, “%"

® The class DatabaseMetaData provides information about database relations
m Has functions for getting all tables, all columns of the table, primary keys etc.

);

‘ Application Architectures

m Applications can be built using one of two architectures
¥ Two tier model

Application program running at user site directly uses
JDBC/ODBC to communicate with the database

¥ Three tier model

‘ Two-tier Model

B E.g. Java code runs at client site and uses JDBC to
communicate with the backend server

H Benefits:
? flexible, need not be restricted to predefined queries

‘ Three Tier Model

Application/HTTP | gopyjets JDBC

/ CGI Program \

Database

[\

‘ Three-tier Model (Cont.)

m E.g. Web client + Java Servlet using JDBC to talk with database
server
m Client sends request over http or application-specific protocol

m Application or Web server receives request

‘ The loan and borrower Relations

Toan-rumber | branch-name | amount] [customer-name] loan-number]|
L-170 Downtown 3000 Jones L-170

he Result of loan inner join borrower
n loan.loan-number = borrower.loan-
number

I'-330 Eeqmooq 000 Sy I'-330
-1M0 Domufomy | 3000 louee -1M0

JOUN-MIUNPEL | PLSNCH-NEIG | WO | CHZIOWGL-MUNG | |0W-iInpeL. |

The Result of loan left outer join
borrower on loan-number

loan-number | branch-name | amount | customer-name | loan-number |
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 null

null

The Result of loan natural inner join
borrower

|_loan-number | branch-name | amount | customer-name |
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

‘ Join Types and Join Conditions

Join types Join Conditions
inner join natural

left outer join

right outer join using (A, Ay, ..., Ap)
full outer join

on < predicate>

The Result of loan natural right outer

join borrower

| loan-number | branch-name | amount | customer-name |

L-170
L-230
L-155

Downtown 3000 Jones
Redwood 4000 Smith
null null Hayes

The Result of loan full outer join
borrower using(loan-number)

loan-number | branch-name

amount | customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

Perryridge
null

‘SQL Data Definition for Part of the Bank Database

create table custonter ;
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name})

create table branch
(branch-nane char(15),
branch-city char(30),
integer,
primary key (branch-name),
check (assets > = 0))

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
check (balance > = 0))

create table depositor
(customer-name char(20),
account-number char(10),

primary_ key (customer-name, account-number))

