Indexing and Hashing

Solutions to Practice Exercises

12.1 Reasons for not keeping several search indices include:

a. Every index requires additional CPU time and disk I/O overhead during
inserts and deletions.

b. Indices on non-primary keys might have to be changed on updates, al-
though an index on the primary key might not (this is because updates
typically do not modify the primary key attributes).

c. Each extra index requires additional storage space.

d. For queries which involve conditions on several search keys, efficiency
might not be bad even if only some of the keys have indices on them.
Therefore database performance is improved less by adding indices when
many indices already exist.

12.2 In general, it is not possible to have two primary indices on the same relation
for different keys because the tuples in a relation would have to be stored in
different order to have same values stored together. We could accomplish this
by storing the relation twice and duplicating all values, but for a centralized
system, this is not efficient.

53

54 Chapter 12 Indexing and Hashing

12.3 The following were generated by inserting values into the B* -tree in ascending
order. A node (other than the root) was never allowed to have fewer than dn=2e
values/pointers.

a.

Lol 1 1]

L2 [[s [s [z [TFlullzll TF~holls Il [Flollall i

b.
Lz lo] [T [T 1]
L
L2llallsIl I [z Mullzll 1T TF+loll2sll2e[la1[]]I
Ml [T I0 100 1T 1]
L \
H2ll sl sz 11 [F—{ln[faz[[1o]]23][20][s1][]]

12.4 With structure 12.3.a:
Insert 9:

Lz llll ATl ol Lullvll [ATwllall [ls][]l]

Insert 10:

Exercises 55

-]

T {15

Insert 8:

Lellsll L=t lsllzll [t sllsll |t bo

|7 || sl] | || sl |]

Delete 23:

19

10| {11{{17 19{[29]| 31

56 Chapter 12 Indexing and Hashing

Delete 19:

19

S

29

//\/\

213 5 8 17 29| (31
With structure 12.3.b:
Insert 9:
L7119]] I
U2llalls[l I[[F=tlzlollaalhz[l F—{l19]l2sll29][31]]

Insert 10:

7]

19 1]

U2[[s[[s]] [l [F—lz [l 9]lro]]1[l17][}—{]10[]23[]29]]s1]]

Exercises 57

Insert 8:
[z 1loliol[T Tl
LellsMlsIl T Tz lslloll T TFHI Mulhz[[T T-+Toll2alleollsa][T|
Delete 23:
[71holholl 1T T]

M20lallsIT T Tz TslTol I [Flwllulliz[l T TF—ollollsal] [T]

Delete 19:

With structure 12.3.c:
Insert 9:

Insert 8:

[l {111

L T
215117 [1 8]lo [lo[F—{ln [l17[[19 [[23[]29][a1[]]

Delete 23:

W f[T 1]

T
211311517 T8l TrolF—{lu 17 [Taol20 [[3 [T T T]

58

Chapter 12

Indexing and Hashing

Delete 19:

12.5 If there are K search-key values and m 1 siblings are involved in the redistri-

bution, the expected height of the tree is: Iogy ¢, 1)n=m c ®)

12.6 The algorithm for insertion into a B-tree is:

Locate the leaf node into which the new key-pointer pair should be inserted.

If there is space remaining in that leaf node, perform the insertion at the correct
location, and the task is over. Otherwise insert the key-pointer pair conceptu-
ally into the correct location in the leaf node, and then split it along the middle.
The middle key-pointer pair does not go into either of the resultant nodes of
the split operation. Instead it is inserted into the parent node, along with the
tree pointer to the new child. If there is no space in the parent, a similar proce-
dure is repeated.

The deletion algorithm is:
Locate the key value to be deleted, in the B-tree.

a. If it is found in a leaf node, delete the key-pointer pair, and the record

from the file. If the leaf node contains less than dn=2e 1 entries as a result
of this deletion, it is either merged with its siblings, or some entries are
redistributed to it. Merging would imply a deletion, whereas redistribution
would imply change(s) in the parent node’s entries. The deletions may
ripple upto the root of the B-tree.

. If the key value is found in an internal node of the B-tree, replace it and

its record pointer by the smallest key value in the subtree immediately to
its right and the corresponding record pointer. Delete the actual record in
the database file. Then delete that smallest key value-pointer pair from the
subtree. This deletion may cause further rippling deletions till the root of
the B-tree.

Below are the B-trees we will get after insertion of the given key values.

We assume that leaf and non-leaf nodes hold the same number of search key
values.

Exercises 59

LIGIGILT T [l 1
Yoy AR

60

Chapter 12 Indexing and Hashing

12.7 Extendable hash structure

12.8 a.

17

\

000
001
010
011
100
101
110
11

11
19

LY AL

IR

Delete 11: From the answer to Exercise 12.7, change the third bucket to:

3]

At this stage, it is possible to coalesce the second and third buckets. Then it
is enough if the bucket address table has just four entries instead of eight.
For the purpose of this answer, we do not do the coalescing.

. Delete 31: From the answer to 12.7, change the last bucket to:

. Insert 15: From the answer to 12.7, change the last bucket to:

Exercises 61

7
15
23

12.9 Let idenote the number of bits of the hash value used in the hash table. Let
bsize denote the maximum capacity of each bucket.

delete(value K 3)

begin
j = first ihigh-order bits of h K ,);
delete value K ; from bucket 5;
coalesce(bucket 5);

end

coalesce(bucket)
begin
ij = bits used in bucket j;
k = any bucket with first (i; 1) bits same as that
of bucket jwhile the bit i, is reversed;
i, = bits used in bucket k;
if(3; & 4)
return; /* buckets cannot be merged */
if(entries in j+ entries in k > bsize)
return; /* buckets cannot be merged */
move entries of bucket k into bucket 5;

decrease the value of i by 1;
make all the bucket-address-table entries,
which pointed to bucket k, point to J;

coalesce(bucket 5);
end

Note that we can only merge two buckets at a time. The common hash prefix
of the resultant bucket will have length one less than the two buckets merged.
Hence we look at the buddy bucket of bucket j differing from it only at the last
bit. If the common hash prefix of this bucket is not i;, then this implies that the
buddy bucket has been further split and merge is not possible.

When merge is successful, further merging may be possible, which is han-
dled by a recursive call to coalesce at the end of the function.

12.10 If the hash table is currently using ibits of the hash value, then maintain a
count of buckets for which the length of common hash prefix is exactly i

Consider a bucket j with length of common hash prefix i;. If the bucket is

being split, and i is equal to i, then reset the count to 1. If the bucket is being

62 Chapter 12 Indexing and Hashing

split and i; is one less that i, then increase the count by 1. It the bucket if being
coalesced, and i; is equal to ithen decrease the count by 1. If the count becomes
0, then the bucket address table can be reduced in size at that point.

However, note that if the bucket address table is not reduced at that point,
then the count has no significance afterwards. If we want to postpone the re-
duction, we have to keep an array of counts, i.e. a count for each value of com-
mon hash prefix. The array has to be updated in a similar fashion. The bucket
address table can be reduced if the i entry of the array is 0, where iis the
number of bits the table is using. Since bucket table reduction is an expensive
operation, it is not always advisable to reduce the table. It should be reduced
only when sufficient number of entries at the end of count array become 0.

12.11 We reproduce the account relation of Figure 12.25 below.

A-217 | Brighton 750
A-101 | Downtown | 500
A-110 | Downtown | 600
A-215 | Mianus 700
A-102 | Perryridge | 400
A-201 | Perryridge | 900
A-218 | Perryridge | 700
A-222 | Redwood 700
A-305 | Round Hill | 350

Bitmaps for branch_name

|Brighton |100000000|
|Downtown|0 1100 0 0 O 0’
| Mianus [0 0001 0000 0]
| Perryridge [0 0 0 0 1 1 1 0 0]
| Redwood [0 0 0 0 0 0 0 1 O]
[Roundhill [0 0 0 0 0 0 0 0 1|
Bitmaps for balance
[Z,]0 0 0 00 00 0 0]
[1,]0 0001000 1]
[T,]0 1 1 10011 0]
[2.]1 0000100 0]

where, level L is below 250, level L, is from 250 to below 500, L5 from 500 to
below 750 and level L, is above 750.

Exercises 63

To find all accounts in Downtown with a balance of 500 or more, we find the
union of bitmaps for levels L3 and L, and then intersect it with the bitmap for

Downtown.
| Downtown 01100000 0]
[L; 01110011 0]
[L4 | 0000100 0]
(L[L, [T 1 1 101 1T10]
| Downtown [01 100000 0]
MDowntown \ L5 [L4) |0 1 1 0 0 0 0 0 0]

Thus, the required tuples are A-101 and A-110.
12.12 No answer

