
C H A P T E R 1 3

Query Processing

Solutions to Practice Exercises

13.1 Query:

ΠT.branch name((Πbranch name, assets(ρT (branch))) �T.assets>S.assets

(Πassets (σ(branch city = ′Brooklyn′)(ρS(branch)))))

This expression performs the theta join on the smallest amount of data possi-
ble. It does this by restricting the right hand side operand of the join to only
those branches in Brooklyn, and also eliminating the unneeded attributes from
both the operands.

13.2 We will refer to the tuples (kangaroo, 17) through (baboon, 12) using tuple
numbers t1 through t12. We refer to the jth run used by the ith pass, as rij . The
initial sorted runs have three blocks each. They are:

r11 = {t3, t1, t2}
r12 = {t6, t5, t4}
r13 = {t9, t7, t8}
r14 = {t12, t11, t10}

Each pass merges three runs. Therefore the runs after the end of the first pass
are:

r21 = {t3, t1, t6, t9, t5, t2, t7, t4, t8}
r22 = {t12, t11, t10}

63

64 Chapter 13 Query Processing

At the end of the second pass, the tuples are completely sorted into one run:

r31 = {t12, t3, t11, t10, t1, t6, t9, t5, t2, t7, t4, t8}

13.3 r1 needs 800 blocks, and r2 needs 1500 blocks. Let us assume M pages of mem-
ory. If M > 800, the join can easily be done in 1500 + 800 disk accesses, using
even plain nested-loop join. So we consider only the case where M ≤ 800
pages.

a. Nested-loop join:
Using r1 as the outer relation we need 20000∗1500+800 = 30, 000, 800

disk accesses, if r2 is the outer relation we need 45000 ∗ 800 + 1500 =
36, 001, 500 disk accesses.

b. Block nested-loop join:
If r1 is the outer relation, we need � 800

M−1� ∗ 1500 + 800 disk accesses, if
r2 is the outer relation we need � 1500

M−1� ∗ 800 + 1500 disk accesses.

c. Merge-join:
Assuming that r1 and r2 are not initially sorted on the join key, the total

sorting cost inclusive of the output is Bs = 1500(2�logM−1(1500/M)� +
2) + 800(2�logM−1(800/M)� + 2) disk accesses. Assuming all tuples with
the same value for the join attributes fit in memory, the total cost is Bs +
1500 + 800 disk accesses.

d. Hash-join:
We assume no overflow occurs. Since r1 is smaller, we use it as the build

relation and r2 as the probe relation. If M > 800/M , i.e. no need for recur-
sive partitioning, then the cost is 3(1500 + 800) = 6900 disk accesses, else
the cost is 2(1500 + 800)�logM−1(800) − 1� + 1500 + 800 disk accesses.

13.4 If there are multiple tuples in the inner relation with the same value for the
join attributes, we may have to access that many blocks of the inner relation
for each tuple of the outer relation. That is why it is inefficient. To reduce this
cost we can perform a join of the outer relation tuples with just the secondary
index leaf entries, postponing the inner relation tuple retrieval. The result file
obtained is then sorted on the inner relation addresses, allowing an efficient
physical order scan to complete the join.

Hybrid merge–join requires the outer relation to be sorted. The above algo-
rithm does not have this requirement, but for each tuple in the outer relation it
needs to perform an index lookup on the inner relation. If the outer relation is
much larger than the inner relation, this index lookup cost will be less than the
sorting cost, thus this algorithm will be more efficient.

13.5 We can store the entire smaller relation in memory, read the larger relation
block by block and perform nested loop join using the larger one as the outer
relation. The number of I/O operations is equal to br+bs, and memory require-
ment is min(br, bs) + 2 pages.

Exercises 65

13.6 a. Use the index to locate the first tuple whose branch city field has value
“Brooklyn”. From this tuple, follow the pointer chains till the end, retriev-
ing all the tuples.

b. For this query, the index serves no purpose. We can scan the file sequen-
tially and select all tuples whose branch city field is anything other than
“Brooklyn”.

c. This query is equivalent to the query

σ(branch city≥′Brooklyn′ ∧ assets<5000)(branch)

Using the branch-city index, we can retrieve all tuples with branch-city value
greater than or equal to “Brooklyn” by following the pointer chains from
the first “Brooklyn” tuple. We also apply the additional criteria of assets <
5000 on every tuple.

13.7 Let outer be the iterator which returns successive tuples from the pipelined
outer relation. Let inner be the iterator which returns successive tuples of the in-
ner relation having a given value at the join attributes. The inner iterator returns
these tuples by performing an index lookup. The functions IndexedNLJoin::open,
IndexedNLJoin::close and IndexedNLJoin::next to implement the indexed nested-
loop join iterator are given below. The two iterators outer and inner, the value
of the last read outer relation tuple tr and a flag doner indicating whether the
end of the outer relation scan has been reached are the state information which
need to be remembered by IndexedNLJoin between calls.

IndexedNLJoin::open()
begin

outer.open();
inner.open();
doner := false;
if(outer.next() �= false)

move tuple from outer’s output buffer to tr;
else

doner := true;
end

IndexedNLJoin::close()
begin

outer.close();
inner.close();

end

66 Chapter 13 Query Processing

boolean IndexedNLJoin::next()
begin

while(¬doner)
begin

if(inner.next(tr[JoinAttrs]) �= false)
begin

move tuple from inner’s output buffer to ts;
compute tr � ts and place it in output buffer;
return true;

end
else

if(outer.next() �= false)
begin

move tuple from outer’s output buffer to tr;
rewind inner to first tuple of s;

end
else

doner := true;
end
return false;

end

13.8 Suppose r(T ∪ S) and s(S) be two relations and r ÷ s has to be computed.
For sorting based algorithm, sort relation s on S. Sort relation r on (T, S).

Now, start scanning r and look at the T attribute values of the first tuple. Scan r
till tuples have same value of T . Also scan s simultaneously and check whether
every tuple of s also occurs as the S attribute of r, in a fashion similar to merge
join. If this is the case, output that value of T and proceed with the next value of
T . Relation s may have to be scanned multiple times but r will only be scanned
once. Total disk accesses, after sorting both the relations, will be |r| + N ∗ |s|,
where N is the number of distinct values of T in r.

We assume that for any value of T , all tuples in r with that T value fit in
memory, and consider the general case at the end. Partition the relation r on
attributes in T such that each partition fits in memory (always possible because
of our assumption). Consider partitions one at a time. Build a hash table on the
tuples, at the same time collecting all distinct T values in a separate hash table.
For each value of T , Now, for each value VT of T , each value s of S, probe the
hash table on (VT , s). If any of the values is absent, discard the value VT , else
output the value VT .

In the case that not all r tuples with one value for T fit in memory, partition r
and s on the S attributes such that the condition is satisfied, run the algorithm
on each corresponding pair of partitions ri and si. Output the intersection of
the T values generated in each partition.

Exercises 67

13.9 Seek overhead is reduced, but the the number of runs that can be merged in a
pass decreases potentially leading to more passes Should choose a value of bb

that minimizes overall cost.

