Advanced Data Types
and New Applications

Solutions to Practice Exercises

24.1

24.2

24.3

A temporal database models the changing states of some aspects of the real
world. The time intervals related to the data stored in a temporal database may
be of two types - valid time and transaction time. The valid time for a fact is the
set of intervals during which the fact is true in the real world. The transaction
time for a data object is the set of time intervals during which this object is part
of the physical database. Only the transaction time is system dependent and is
generated by the database system.

Suppose we consider our sample bank database to be bitemporal. Only the
concept of valid time allows the system to answer queries such as - “What was
Smith’s balance two days ago?”. On the other hand, queries such as - “What
did we record as Smith’s balance two days ago?” can be answered based on
the transaction time. The difference between the two times is important. For
example, suppose, three days ago the teller made a mistake in entering Smith’s
balance and corrected the error only yesterday. This error means that there is a
difference between the results of the two queries (if both of them are executed
today).

The given query is not a range query, since it requires only searching for a
point. This query can be efficiently answered by a B-tree index on the pair of
attributes (x, y).

Suppose that we want to search for the nearest neighbor of a point P in a
database of points in the plane. The idea is to issue multiple region queries
centered at P. Each region query covers a larger area of points than the previ-
ous query. The procedure stops when the result of a region query is non-empty.
The distance from P to each point within this region is calculated and the set
of points at the smallest distance is reported.

105

106 Chapter24 Advanced Data Types and New Applications

24.4 Large bounding boxes tend to overlap even where the region of overlap does
not contain any information. The following figure:

shows a region R within which we have to locate a segment. Note that even
though none of the four segments lies in R, due to the large bounding boxes,
we have to check each of the four bounding boxes to confirm this.

A significant improvement is observed in the follwoing figure:

where each segment is split into multiple pieces, each with its own bounding
box. In the second case, the box R is not part of the boxes indexed by the R-tree.
In general, dividing a segment into smaller pieces causes the bounding boxes
to be smaller and less wasteful of area.

Exercises 107

24.5 Following is a recursive procedure for computing spatial join of two R-trees.

SpJoin(node n;, node ns)
begin
if(the bounding boxes of n; and ny do not intersect)
return;
if(both n; and n, are leaves)
output all pairs of entries (e, e2) such that
e1 € ny and ey € ng, and e; and e, overlap;
if(n is not a leaf)
NS, = set of children of ny;
else
NSy = { ni }}
if(n; is not a leaf)
NS, = set of children of ny;
else
NSy ={nm };
for each ns; in NS; and nsy in N.Sy;
SpJoin(nsy, nss);
end

24.6 The concepts of RAID can be used to improve reliability of the broadcast of data
over wireless systems. Each block of data that is to be broadcast is split into
units of equal size. A checksum value is calculated for each unit and appended
to the unit. Now, parity data for these units is calculated. A checksum for the
parity data is appended to it to form a parity unit. Both the data units and the
parity unit are then broadcast one after the other as a single transmission.

On reception of the broadcast, the receiver uses the checksums to verify
whether each unit is received without error. If one unit is found to be in er-
ror, it can be reconstructed from the other units.

The size of a unit must be chosen carefully. Small units not only require
more checksums to be computed, but the chance that a burst of noise corrupts
more than one unit is also higher. The problem with using large units is that
the probability of noise affecting a unit increases; thus there is a tradeoff to be
made.

24.7 We can distinguish two models of broadcast data. In the case of a pure broad-
cast medium, where the receiver cannot communicate with the broadcaster, the
broadcaster transmits data with periodic cycles of retransmission of the entire
data, so that new receivers can catch up with all the broadcast information.
Thus, the data is broadcast in a continuous cycle. This period of the cycle can
be considered akin to the worst case rotational latency in a disk drive. There is
no concept of seek time here. The value for the cycle latency depends on the

108

Chapter 24

24.8

Advanced Data Types and New Applications

application, but is likely to be at least of the order of seconds, which is much
higher than the latency in a disk drive.

In an alternative model, the receiver can send requests back to the broad-
caster. In this model, we can also add an equivalent of disk access latency, be-
tween the receiver sending a request, and the broadcaster receiving the request
and responding to it. The latency is a function of the volume of requests and
the bandwidth of the broadcast medium. Further, queries may get satisfied
without even sending a request, since the broadcaster happened to send the
data either in a cycle or based on some other receivers request. Regardless, la-
tency is likely to be at least of the order of seconds, again much higher than the
corresponding values for a hard disk.

A typical hard disk can transfer data at the rate of 1 to 5 megabytes per
second. In contrast, the bandwidth of a broadcast channel is typically only a
tew kilobytes per second. Total latency is likely to be of the order of seconds to
hundreds or even thousands of seconds, compared to a few milliseconds for a
hard disk.

Let C be the computer onto which the central database is loaded. Each mobile
computer (host) i stores, with its copy of each document d, a version-vector —
that is a set of version numbers V; ; ;, with one entry for each other host j that
stores a copy of the document d, which it could possibly update.

Host A updates document 1 while it is disconnected from C. Thus, accord-
ing to the version vector scheme, the version number V; 4 4 is incremented by
one.

Now, suppose host A re-connects to C. This pair exchanges version-vectors
and finds that the version number Vi 4 4 is greater than V; ¢ 4 by 1, (assuming
that the copy of document 1 stored host A was updated most recently only by
host A). Following the version-vector scheme, the version of document 1 at C
is updated and the change is reflected by an increment in the version number
Vi,c, 4. Note that these are the only changes made by either host.

Similarly, when host B connects to host C, they exchange version-vectors,
and host B finds that V} p 4 is one less than Vj ¢ 4. Thus, the version number
Vi,B, 4 is incremented by one, and the copy of document 1 at host B is updated.

Thus, we see that the version-vector scheme ensures proper updating of the
central database for the case just considered. This argument can be very easily
generalized for the case where multiple off-line updates are made to copies of
document 1 at host A as well as host B and host C. The argument for off-line
updates to document 2 is similar.

