
C H A P T E R 4

Advanced SQL

Solutions to Practice Exercises

4.1 Query:

create table loan
(loan number char(10),
branch name char(15),
amount integer,
primary key (loan number),
foreign key (branch name) references branch)

create table borrower
(customer name char(20),
loan number char(10),
primary key (customer name, loan number),
foreign key (customer name) references customer,
foreign key (loan number) references loan)

Declaring the pair customer name, loan number of relation borrower as primary key
ensures that the relation does not contain duplicates.

4.2 Query:

11



12 Chapter 4 Advanced SQL

create table employee
(person name char(20),
street char(30),
city char(30),
primary key (person name) )

create table works
(person name char(20),
company name char(15),
salary integer,
primary key (person name),
foreign key (person name) references employee,
foreign key (company name) references company)

create table company
(company name char(15),
city char(30),
primary key (company name))

ppcreate table manages
(person name char(20),
manager name char(20),
primary key (person name),
foreign key (person name) references employee,
foreign key (manager name) references employee)

Note that alternative datatypes are possible. Other choices for not null at-
tributes may be acceptable.

a. check condition for the works table:
check((employee name, company name) in

(select e.employee name, c.company name
from employee e, company c
where e.city = c.city
)

)

b. check condition for the works table:



Exercises 13

check(
salary < all

(select manager salary
from (select manager name, manages.employee name as emp name,

salary as manager salary
from works, manages
where works.employee name = manages.manager name)

where employee name = emp name
)

)
The solution is slightly complicated because of the fact that inside the se-
lect expression’s scope, the outer works relation into which the insertion is
being performed is inaccessible. Hence the renaming of the employee name
attribute to emp name. Under these circumstances, it is more natural to use
assertions.

4.3 The tuples of all employees of the manager, at all levels, get deleted as well! This
happens in a series of steps. The initial deletion will trigger deletion of all the
tuples corresponding to direct employees of the manager. These deletions will
in turn cause deletions of second level employee tuples, and so on, till all direct
and indirect employee tuples are deleted.

4.4 The assertion name is arbitrary. We have chosen the name perry. Note that since
the assertion applies only to the Perryridge branch we must restrict attention to
only the Perryridge tuple of the branch relation rather than writing a constraint
on the entire relation.

create assertion perry check
(not exists (select *

from branch
where branch name = ’Perryridge’ and

assets �= (select sum (amount)
from loan
where branch name = ’Perryridge’)))

4.5 Writing queries in SQL is typically much easier than coding the same queries in a
general-purpose programming language. However not all kinds of queries can
be written in SQL. Also nondeclarative actions such as printing a report, inter-
acting with a user, or sending the results of a query to a graphical user interface
cannot be done from within SQL. Under circumstances in which we want the
best of both worlds, we can choose embedded SQL or dynamic SQL, rather than
using SQL alone or using only a general-purpose programming language.

Embedded SQL has the advantage of programs being less complicated since it
avoids the clutter of the ODBC or JDBC function calls, but requires a specialized
preprocessor.


