
CHAP T E R 27
Formal-Relational Query
Languages

In Chapter 2 we introduced the relational model and presented the relational algebra
(RA), which forms the basis of the widely used SQL query language. In this chapter we
continue with our coverage of “pure” query languages. In particular, we cover the tuple
relational calculus and the domain relational calculus, which are declarative query lan-
guages based on mathematical logic. We also cover Datalog, which has a syntax mod-
eled after the Prolog language. Although not used commercially at present, Datalog has
been used in several research database systems. For Datalog, we present fundamental
constructs and concepts rather than a complete users’ guide for these languages. Keep
in mind that individual implementations of a language may differ in details or may
support only a subset of the full language.

27.1 The Tuple Relational Calculus

When we write a relational-algebra expression, we provide a sequence of procedures
that generates the answer to our query. The tuple relational calculus, by contrast, is a
nonprocedural query language. It describes the desired information without giving a
specific procedure for obtaining that information.

A query in the tuple relational calculus is expressed as:

{t | P(t)}

That is, it is the set of all tuples t such that predicate P is true for t. Following our earlier
notation, we use t[A] to denote the value of tuple t on attribute A, and we use t ∈ r to
denote that tuple t is in relation r.

Before we give a formal definition of the tuple relational calculus, we return to
some of the queries for which we wrote relational-algebra expressions in Section 2.6.

1

2 Chapter 27 Formal-Relational Query Languages

27.1.1 Example Queries

Find the ID, name, dept name, salary for instructors whose salary is greater than
$80,000:

{t | t ∈ instructor ∧ t[salary] > 80000}

Suppose that we want only the ID attribute, rather than all attributes of the instruc-
tor relation. To write this query in the tuple relational calculus, we need to write an
expression for a relation on the schema (ID). We need those tuples on (ID) such that
there is a tuple in instructor with the salary attribute > 80000. To express this request,
we need the construct “there exists” from mathematical logic. The notation:

∃ t ∈ r (Q(t))

means “there exists a tuple t in relation r such that predicate Q(t) is true.”
Using this notation, we can write the query “Find the instructor ID for each in-

structor with a salary greater than $80,000” as:

{t | ∃ s ∈ instructor (t[ID] = s[ID]
∧ s[salary] > 80000)}

In English, we read the preceding expression as “The set of all tuples t such that there
exists a tuple s in relation instructor for which the values of t and s for the ID attribute
are equal, and the value of s for the salary attribute is greater than $80,000.”

Tuple variable t is defined on only the ID attribute, since that is the only attribute
having a condition specified for t. Thus, the result is a relation on (ID).

Consider the query “Find the names of all instructors whose department is in
the Watson building.” This query is slightly more complex than the previous queries,
since it involves two relations: instructor and department. As we shall see, however, all
it requires is that we have two “there exists” clauses in our tuple-relational-calculus
expression, connected by and (∧). We write the query as follows:

{t | ∃ s ∈ instructor (t[name] = s[name]
∧ ∃ u ∈ department (u[dept name] = s[dept name]

∧ u[building] = “Watson”))}

Tuple variable u is restricted to departments that are located in the Watson building,
while tuple variable s is restricted to instructors whose dept name matches that of tuple
variable u. Figure 27.1 shows the result of this query.

To find the set of all courses taught in the Fall 2017 semester, the Spring 2018
semester, or both, we used the union operation in the relational algebra. In the tuple
relational calculus, we shall need two “there exists” clauses, connected by or (∨):

27.1 The Tuple Relational Calculus 3

name

Einstein
Crick
Gold

Figure 27.1 Names of all instructors whose department is in the Watson building.

{t | ∃ s ∈ section (t[course id] = s[course id])
∧ s[semester] = “Fall” ∧ s[year] = 2017)

∨ ∃ u ∈ section (u[course id] = t[course id])
∧ u[semester] = “Spring” ∧ u[year] = 2018)}

This expression gives us the set of all course id tuples for which at least one of the
following holds:

• The course id appears in some tuple of the section relation with semester = Fall and
year = 2017.

• The course id appears in some tuple of the section relation with semester = Spring
and year = 2018.

If the same course is offered in both the Fall 2017 and Spring 2018 semesters, its course
id appears only once in the result, because the mathematical definition of a set does

not allow duplicate members. The result of this query is shown in Figure 27.2.
If we now want only those course id values for courses that are offered in both the

Fall 2017 and Spring 2018 semesters, all we need to do is to change the or (∨) to and
(∧) in the preceding expression.

course id

CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 27.2 Courses offered in either Fall 2017, Spring 2018, or both semesters.

4 Chapter 27 Formal-Relational Query Languages

course id

CS-101

Figure 27.3 Courses offered in both the Fall 2017 and Spring 2018 semesters.

{t | ∃ s ∈ section (t[course id] = s[course id])
∧ s[semester] = “Fall” ∧ s[year] = 2017)

∧ ∃ u ∈ section (u[course id] = t[course id])
∧ u[semester] = “Spring” ∧ u[year] = 2018)}

The result of this query appears in Figure 27.3.
Now consider the query “Find all the courses taught in the Fall 2017 semester but

not in Spring 2018 semester.” The tuple-relational-calculus expression for this query
is similar to the expressions that we have just seen, except for the use of the not (¬)
symbol:

{t | ∃ s ∈ section (t[course id] = s[course id])
∧ s[semester] = “Fall” ∧ s[year] = 2017)

∧ ¬ ∃ u ∈ section (u[course id] = t[course id])
∧ u[semester] = “Spring” ∧ u[year] = 2018)}

This tuple-relational-calculus expression uses the ∃s ∈ section (…) clause to re-
quire that a particular course id is taught in the Fall 2017 semester, and it uses the
¬ ∃ u ∈ section (…) clause to eliminate those course id values that appear in some
tuple of the section relation as having been taught in the Spring 2018 semester.

The query that we shall consider next uses implication, denoted by ⇒. The formula
P ⇒ Q means “P implies Q”; that is, “if P is true, then Q must be true.” Note that
P ⇒ Q is logically equivalent to ¬P ∨ Q. The use of implication rather than not and
or often suggests a more intuitive interpretation of a query in English.

Consider the query that “Find all students who have taken all courses offered in the
Biology department.” To write this query in the tuple relational calculus, we introduce
the “for all” construct, denoted by ∀. The notation:

∀ t ∈ r (Q(t))

means “Q is true for all tuples t in relation r.”
We write the expression for our query as follows:

{t | ∃ r ∈ student (r[ID] = t[ID]) ∧
(∀ u ∈ course (u[dept name] = “ Biology” ⇒

∃ s ∈ takes (t[ID] = s[ID]
∧ s[course id] = u[course id]))}

27.1 The Tuple Relational Calculus 5

In English, we interpret this expression as “The set of all students (i.e., (ID) tuples t)
such that, for all tuples u in the course relation, if the value of u on attribute dept name
is ’Biology’, then there exists a tuple in the takes relation that includes the student ID
and the course id.”

Note that there is a subtlety in the preceding query: If there is no course offered
in the Biology department, all student IDs satisfy the condition. The first line of the
query expression is critical in this case—without the condition

∃ r ∈ student (r[ID] = t[ID])

if there is no course offered in the Biology department, any value of t (including values
that are not student IDs in the student relation) would qualify.

27.1.2 Formal Definition

We are now ready for a formal definition. A tuple-relational-calculus expression is of
the form:

{t|P(t)}

where P is a formula. Several tuple variables may appear in a formula. A tuple variable
is said to be a free variable unless it is quantified by a ∃ or ∀. Thus, in:

t ∈ instructor ∧ ∃ s ∈ department(t[dept name] = s[dept name])

t is a free variable. Tuple variable s is said to be a bound variable.
A tuple-relational-calculus formula is built up out of atoms. An atom has one of the

following forms:

• s ∈ r, where s is a tuple variable and r is a relation (we do not allow use of the ∉
operator).

• s[x]Θ u[y], where s and u are tuple variables, x is an attribute on which s is defined,
y is an attribute on which u is defined, and Θ is a comparison operator (<, ≤, =,
≠, >, ≥); we require that attributes x and y have domains whose members can be
compared by Θ.

• s[x] Θ c, where s is a tuple variable, x is an attribute on which s is defined, Θ is a
comparison operator, and c is a constant in the domain of attribute x.

We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formula, then so are ¬P1 and (P1).

6 Chapter 27 Formal-Relational Query Languages

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(s) is a formula containing a free tuple variable s, and r is a relation, then

∃ s ∈ r (P1(s)) and ∀ s ∈ r (P1(s))

are also formulae.

As we could for the relational algebra, we can write equivalent expressions that are
not identical in appearance. In the tuple relational calculus, these equivalences include
the following three rules:

1. P1 ∧ P2 is equivalent to ¬ (¬(P1) ∨ ¬(P2)).

2. ∀ t ∈ r (P1(t)) is equivalent to ¬ ∃ t ∈ r (¬P1(t)).

3. P1 ⇒ P2 is equivalent to ¬(P1) ∨ P2.

27.1.3 Safety of Expressions

There is one final issue to be addressed. A tuple-relational-calculus expression may
generate an infinite relation. Suppose that we write the expression:

{t |¬ (t ∈ instructor)}

There are infinitely many tuples that are not in instructor. Most of these tuples contain
values that do not even appear in the database! We do not wish to allow such expres-
sions.

To help us define a restriction of the tuple relational calculus, we introduce the
concept of the domain of a tuple relational formula, P. Intuitively, the domain of P, de-
noted dom(P), is the set of all values referenced by P. They include values mentioned in
P itself, as well as values that appear in a tuple of a relation mentioned in P. Thus, the do-
main of P is the set of all values that appear explicitly in P or that appear in one or more
relations whose names appear in P. For example, dom(t ∈ instructor ∧ t[salary] >

80000) is the set containing 80000 as well as the set of all values appearing in any at-
tribute of any tuple in the instructor relation. Similarly, dom(¬ (t ∈ instructor)) is also
the set of all values appearing in instructor, since the relation instructor is mentioned in
the expression.

We say that an expression {t | P(t)} is safe if all values that appear in the result
are values from dom(P). The expression {t |¬ (t ∈ instructor)} is not safe. Note that
dom(¬ (t ∈ instructor)) is the set of all values appearing in instructor. However, it
is possible to have a tuple t not in instructor that contains values that do not appear
in instructor. The other examples of tuple-relational-calculus expressions that we have
written in this section are safe.

27.2 The Domain Relational Calculus 7

The number of tuples that satisfy an unsafe expression, such as {t |¬ (t ∈
instructor)}, could be infinite, whereas safe expressions are guaranteed to have finite
results. The class of tuple-relational-calculus expressions that are allowed is therefore
restricted to those that are safe.

27.2 The Domain Relational Calculus

A second form of relational calculus, called domain relational calculus, uses domain
variables that take on values from an attributes domain, rather than values for an entire
tuple. The domain relational calculus, however, is closely related to the tuple relational
calculus.

Domain relational calculus serves as the theoretical basis of the QBE language just
as relational algebra serves as the basis for the SQL language.

27.2.1 Formal Definition

An expression in the domain relational calculus is of the form

{ < x1, x2,… , xn > | P(x1, x2,… , xn)}

where x1, x2,… , xn represent domain variables. P represents a formula composed of
atoms, as was the case in the tuple relational calculus. An atom in the domain relational
calculus has one of the following forms:

• < x1, x2,… , xn > ∈ r, where r is a relation on n attributes and x1, x2,… , xn are
domain variables or domain constants.

• x Θ y, where x and y are domain variables and Θ is a comparison operator (<, ≤,
=, ≠, >, ≥). We require that attributes x and y have domains that can be compared
by Θ.

• x Θ c, where x is a domain variable, Θ is a comparison operator, and c is a constant
in the domain of the attribute for which x is a domain variable.

We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formula, then so are ¬P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(x) is a formula in x, where x is a free domain variable, then

∃ x (P1(x)) and ∀ x (P1(x))

8 Chapter 27 Formal-Relational Query Languages

are also formulae.

As a notational shorthand, we write ∃ a, b, c (P(a, b, c)) for ∃ a (∃ b (∃ c (P(a, b, c)))).

27.2.2 Example Queries

We now give domain-relational-calculus queries for the examples that we considered
earlier. Note the similarity of these expressions and the corresponding tuple-relational-
calculus expressions.

• Find the instructor ID, name, dept name, and salary for instructors whose salary is
greater than $80,000:

{ < i, n, d, s > | < i, n, d, s > ∈ instructor ∧ s > 80000}

• Find all instructor ID for instructors whose salary is greater than $80,000:

{ < i > | ∃ n, d, s (< i, n, d, s > ∈ instructor ∧ s > 80000)}

Although the second query appears similar to the one that we wrote for the tuple rela-
tional calculus, there is an important difference. In the tuple calculus, when we write
∃ s for some tuple variable s, we bind it immediately to a relation by writing ∃ s ∈ r.
However, when we write ∃ n in the domain calculus, n refers not to a tuple, but rather to
a domain value. Thus, the domain of variable n is unconstrained until the subformula
< i, n, d, s > ∈ instructor constrains n to instructor names that appear in the instructor
relation.

We now give several examples of queries in the domain relational calculus.

• Find the names of all instructors in the Physics department together with the
course id of all courses they teach:

{ < n, c > | ∃ i, a, se, y (< i, c, a, se, y > ∈ teaches
∧ ∃ d, s (< i, n, d, s > ∈ instructor ∧ d = “Physics”))}

• Find the set of all courses taught in the Fall 2017 semester, the Spring 2018
semester, or both:

{ < c > |∃ a, s, y, b, r, t (< c, a, s, y, b, r, t >∈ section
∧ s = “Fall” ∧ y = “2017”)

∨∃ a, s, y, b, r, t (< c, a, s, y, b, r, t >∈ section
∧ s = “Spring” ∧ y = “2018”)}

• Find all students who have taken all courses offered in the Biology department:

27.2 The Domain Relational Calculus 9

{ < i > | ∃ n, d, tc (< i, n, d, tc > ∈ student) ∧
∀ ci, ti, dn, cr (< ci, ti, dn, cr > ∈ course ∧ dn = “Biology” ⇒
∃ si, se, y, g (< i, ci, si, se, y, g > ∈ takes))}

Note that as was the case for tuple relational calculus, if no courses are offered in
the Biology department, all students would be in the result.

27.2.3 Safety of Expressions

We noted that, in the tuple relational calculus (Section 27.1), it is possible to write
expressions that may generate an infinite relation. That led us to define safety for tuple-
relational-calculus expressions. A similar situation arises for the domain relational cal-
culus. An expression such as

{ < i, n, d, s > | ¬(< i, n, d, s > ∈ instructor)}

is unsafe, because it allows values in the result that are not in the domain of the expres-
sion.

For the domain relational calculus, we must be concerned also about the form of
formulae within “there exists” and “for all” clauses. Consider the expression

{ < x > | ∃ y (< x, y >∈ r) ∧ ∃ z (¬(< x, z >∈ r) ∧ P(x, z))}

where P is some formula involving x and z. We can test the first part of the formula,
∃ y (< x, y >∈ r), by considering only the values in r. However, to test the second part
of the formula, ∃ z (¬ (< x, z > ∈ r) ∧ P(x, z)), we must consider values for z that do
not appear in r. Since all relations are finite, an infinite number of values do not appear
in r. Thus, it is not possible, in general, to test the second part of the formula without
considering an infinite number of potential values for z. Instead, we add restrictions to
prohibit expressions such as the preceding one.

In the tuple relational calculus, we restricted any existentially quantified variable
to range over a specific relation. Since we did not do so in the domain calculus, we
add rules to the definition of safety to deal with cases like our example. We say that an
expression

{ < x1, x2,… , xn > | P (x1, x2,… , xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom(P).

2. For every “there exists” subformula of the form ∃ x (P1(x)), the subformula is
true if and only if there is a value x in dom(P1) such that P1(x) is true.

10 Chapter 27 Formal-Relational Query Languages

3. For every “for all” subformula of the form ∀x (P1(x)), the subformula is true if
and only if P1(x) is true for all values x from dom(P1).

The purpose of the additional rules is to ensure that we can test “for all” and “there
exists” subformulae without having to test infinitely many possibilities. Consider the
second rule in the definition of safety. For ∃ x (P1(x)) to be true, we need to find only
one x for which P1(x) is true. In general, there would be infinitely many values to test.
However, if the expression is safe, we know that we can restrict our attention to values
from dom(P1). This restriction reduces to a finite number the tuples we must consider.

The situation for subformulae of the form ∀x (P1(x)) is similar. To assert that
∀x (P1(x)) is true, we must, in general, test all possible values, so we must examine
infinitely many values. As before, if we know that the expression is safe, it is sufficient
for us to test P1(x) for those values taken from dom(P1).

All the domain-relational-calculus expressions that we have written in the example
queries of this section are safe, except for the example unsafe query we saw earlier.

27.3 Expressive Power of Pure Relational Query Languages

The tuple relational calculus restricted to safe expressions is equivalent in expressive
power to the basic relational algebra (with the operators∪,−,×, σ,Π, and ρ, but without
the extended relational operations such as generalized projection and aggregation (γ)).
Thus, for every relational-algebra expression using only the basic operations, there is
an equivalent expression in the tuple relational calculus, and for every tuple-relational-
calculus expression, there is an equivalent relational-algebra expression. We shall not
prove this assertion here; the bibliographic notes contain references to the proof. Some
parts of the proof are included in the exercises. We note that the tuple relational cal-
culus does not have any equivalent of the aggregate operation, but it can be extended
to support aggregation. Extending the tuple relational calculus to handle arithmetic
expressions is straightforward.

When the domain relational calculus is restricted to safe expressions, it is equiva-
lent in expressive power to the tuple relational calculus restricted to safe expressions.
Since we noted earlier that the restricted tuple relational calculus is equivalent to the
relational algebra, all three of the following are equivalent:

• The basic relational algebra (without the extended relational-algebra operations)

• The tuple relational calculus restricted to safe expressions

• The domain relational calculus restricted to safe expressions

We note that the domain relational calculus also does not have any equivalent of the
aggregate operation, but it can be extended to support aggregation, and extending it to
handle arithmetic expressions is straightforward.

27.4 Datalog 11

account number branch name balance

A-101 Downtown 500
A-215 Minus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Perryridge 900
A-222 Redwood 700
A-217 Perryridge 750

Figure 27.4 The account relation.

27.4 Datalog

Datalog is a nonprocedural query language based on the logic-programming language
Prolog. As in the relational calculus, a user describes the information desired with-
out giving a specific procedure for obtaining that information. The syntax of Datalog
resembles that of Prolog. However, the meaning of Datalog programs is defined in a
purely declarative manner, unlike the more procedural semantics of Prolog, so Datalog
simplifies writing simple queries and makes query optimization easier.

27.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal defini-
tion of Datalog rules and their formal meaning, we consider examples. Consider a
Datalog rule to define a view relation v1 containing account numbers and balances for
accounts at the Perryridge branch with a balance of over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and defines
the view relation v1. The symbol :– is read as “if,” and the comma separating the
“account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, the rule is
understood as follows:

for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

Suppose that the relation account is as shown in Figure 27.4. Then, the view relation
v1 contains the tuples in Figure 27.5.

To retrieve the balance of account number A-217 in the view relation v1, we can
write the following query:

12 Chapter 27 Formal-Relational Query Languages

account number balance

A-201 900
A-217 750

Figure 27.5 The v1 relation.

? v1(“A-217”, B)

The answer to the query is

(A-217, 750)

To get the account number and balance of all accounts in relation v1, where the balance
is greater than 800, we can write

? v1(A, B), B > 800

The answer to this query is

(A-201, 900)

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view relation
is then defined as the union of all these sets of tuples. The following Datalog program
specifies the interest rates for accounts:

interest rate(A, 5) :– account(A, N , B), B < 10000
interest rate(A, 6) :– account(A, N , B), B >= 10000

The program has two rules defining a view relation interest rate, whose attributes are
the account number and the interest rate. The rules say that, if the balance is less than
$10,000, then the interest rate is 5 percent, and if the balance is greater than or equal
to $10,000, the interest rate is 6 percent.

Datalog rules can also use negation. The following rules define a view relation c
that contains the names of all customers who have a deposit, but have no loan, at the
bank:

c(N) :– depositor(N ,A), not is borrower(N)
is borrower(N) :– borrower(N , L)

Prolog and most Datalog implementations recognize attributes of a relation by po-
sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL

27.4 Datalog 13

queries. However, when relations have a large number of attributes, or the order or
number of attributes of relations may change, the positional notation can be cumber-
some and error prone. It is not hard to create a variant of Datalog syntax using named
attributes, rather than positional attributes. In such a system, the Datalog rule defining
v1 can be written as

v1(account number A, balance B) :–
account(account number A, branch name “Perryridge”, balance B),
B > 700

Translation between the two forms can be done without significant effort, given the
relation schema.

27.4.2 Syntax of Datalog Rules

Now that we have informally explained rules and queries, we can formally define their
syntax; we discuss their meaning in Section 27.4.3. We use the same conventions as
in the relational algebra for denoting relation names, attribute names, and constants
(such as numbers or quoted strings). We use uppercase (capital) letters and words
starting with uppercase letters to denote variable names, and lowercase letters and
words starting with lowercase letters to denote relation names and attribute names.
Examples of constants are 4, which is a number, and “John,” which is a string; X and
Name are variables. A positive literal has the form

p(t1, t2,… , tn)

where p is the name of a relation with n attributes, and t1, t2, . . . , tn are either constants
or variables. A negative literal has the form

not p(t1, t2,… , tn)

where relation p has n attributes. Here is an example of a literal:

account(A, “Perryridge”, B)

Literals involving arithmetic operations are treated specially. For example, the lit-
eral B > 700, although not in the syntax just described, can be conceptually understood
to stand for > (B, 700), which is in the required syntax, and where > is a relation.

But what does this notation mean for arithmetic operations such as “>”? The rela-
tion > (conceptually) contains tuples of the form (x, y) for every possible pair of values
x, y such that x > y. Thus, (2, 1) and (5,−33) are both tuples in >. The (conceptual)
relation > is infinite. Other arithmetic operations (such as >, =, +, and −) are also
treated conceptually as relations. For example, A = B + C stands conceptually for
+(B, C, A), where the relation + contains every tuple (x, y, z) such that z = x + y.

14 Chapter 27 Formal-Relational Query Languages

interest(A, I) :– account(A, “Perryridge”, B),
interest rate(A, R), I = B ∗ R∕100

interest rate(A, 5) :– account(A, N , B), B < 10000
interest rate(A, 6) :– account(A, N , B), B >= 10000

Figure 27.6 Datalog program that defines interest on Perryridge accounts.

A fact is written in the form

p(v1, v2,… , vn)

and denotes that the tuple (v1, v2,… , vn) is in relation p. A set of facts for a relation
can also be written in the usual tabular notation. A set of facts for the relations in a
database schema is equivalent to an instance of the database schema. Rules are built
out of literals and have the form

p(t1, t2,… , tn) :– L1, L2,… , Ln

where each Li is a (positive or negative) literal. The literal p(t1, t2,… , tn) is referred to
as the head of the rule, and the rest of the literals in the rule constitute the body of the
rule.

A Datalog program consists of a set of rules; the order in which the rules are written
has no significance. As mentioned earlier, there may be several rules defining a relation.

Figure 27.6 shows a Datalog program that defines the interest on each account in
the Perryridge branch. The first rule of the program defines a view relation interest,
whose attributes are the account number and the interest earned on the account. It
uses the relation account and the view relation interest rate. The last two rules of the
program are rules that we saw earlier.

A view relation v1 is said to depend directly on a view relation v2 if v2 is used in the
expression defining v1. In the preceding program, view relation interest depends directly
on relations interest rate and account. Relation interest rate in turn depends directly on
account.

A view relation v1 is said to depend indirectly on view relation v2 if there is a sequence
of intermediate relations i1, i2,… , in, for some n, such that v1 depends directly on i1, i1
depends directly on i2, and so on until in−1 depends on in.

In the example in Figure 27.6, since we have a chain of dependencies from interest
to interest rate to account, relation interest also depends indirectly on account.

Finally, a view relation v1 is said to depend on view relation v2 if v1 depends either
directly or indirectly on v2.

A view relation v is said to be recursive if it depends on itself. A view relation that
is not recursive is said to be nonrecursive.

27.4 Datalog 15

empl(X , Y) :– manager(X , Y)
empl(X , Y) :– manager(X , Z), empl(Z, Y)

Figure 27.7 Recursive Datalog program.

Consider the program in Figure 27.7. Here, the view relation empl depends on
itself (because of the second rule), and is therefore recursive. In contrast, the program
in Figure 27.6 is nonrecursive.

27.4.3 Semantics of Nonrecursive Datalog

We consider the formal semantics of Datalog programs. For now, we consider only pro-
grams that are nonrecursive. The semantics of recursive programs is somewhat more
complicated; it is discussed in Section 27.4.6. We define the semantics of a program by
starting with the semantics of a single rule.

27.4.3.1 Semantics of a Rule

A ground instantiation of a rule is the result of replacing each variable in the rule by
some constant. If a variable occurs multiple times in a rule, all occurrences of the
variable must be replaced by the same constant. Ground instantiations are often simply
called instantiations.

Our example rule defining v1, and an instantiation of the rule, are:

v1(A, B) :– account(A, “Perryridge”, B), B > 700
v1(“A-217”, 750) :– account(“A-217”, “Perryridge”, 750), 750 > 700

Here, variable A was replaced by “A-217” and variable B by 750.
A rule usually has many possible instantiations. These instantiations correspond

to the various ways of assigning values to each variable in the rule.
Suppose that we are given a rule R,

p(t1, t2,… , tn) :– L1, L2,… , Ln

and a set of facts I for the relations used in the rule (I can also be thought of as a
database instance). Consider any instantiation R′ of rule R:

p(v1, v2,… , vn) :– l1, l2,… , ln

where each literal li is either of the form qi(vi,1, v1,2,… , vi,ni
) or of the form not qi(vi,1,

vi,2, … , vi,ni
), and where each vi and each vi,j is a constant.

16 Chapter 27 Formal-Relational Query Languages

We say that the body of rule instantiation R′ is satisfied in I if

1. For each positive literal qi(vi,1,… , vi,ni
) in the body of R′, the set of facts I con-

tains the fact q(vi,1,… , vi,ni
).

2. For each negative literal not qj(vj,1,… , vj,nj
) in the body of R′, the set of facts I

does not contain the fact qj(vj,1,… , vj,nj
).

We define the set of facts that can be inferred from a given set of facts I using rule
R as

infer(R, I) = {p(t1,… , tni
) ∣ there is an instantiation R′ of R,

where p(t1,… , tni
) is the head of R′, and

the body of R′ is satisfied in I}.

Given a set of rules = {R1, R2,… , Rn}, we define

infer(, I) = infer(R1, I) ∪ infer(R2, I) ∪…∪ infer(Rn, I)

Suppose that we are given a set of facts I containing the tuples for relation account
in Figure 27.4. One possible instantiation of our running-example rule R is

v1(“A-217”, 750) :– account(“A-217”, “Perryridge”, 750), 750 > 700

The fact account(“A-217”, “Perryridge”, 750) is in the set of facts I . Further, 750 is
greater than 700, and hence conceptually (750, 700) is in the relation “>”. Hence, the
body of the rule instantiation is satisfied in I . There are other possible instantiations of
R, and using them we find that infer(R, I) has exactly the set of facts for v1 that appears
in Figure 27.8.

27.4.3.2 Semantics of a Program

When a view relation is defined in terms of another view relation, the set of facts in
the first view depends on the set of facts in the second one. We have assumed, in this
section, that the definition is nonrecursive; that is, no view relation depends (directly
or indirectly) on itself. Hence, we can layer the view relations in the following way and
can use the layering to define the semantics of the program:

account number balance

A-201 900
A-217 750

Figure 27.8 Result of infer(R, I).

27.4 Datalog 17

interest

account

interest_rate
perryridge_account

layer 2

layer 1

database

Figure 27.9 Layering of view relations.

• A relation is in layer 1 if all relations used in the bodies of rules defining it are
stored in the database.

• A relation is in layer 2 if all relations used in the bodies of rules defining it either
are stored in the database or are in layer 1.

• In general, a relation p is in layer i + 1 if (1) it is not in layers 1, 2,… , i and (2) all
relations used in the bodies of rules defining p either are stored in the database or
are in layers 1, 2,… , i.

Consider the program in Figure 27.6 with the additional rule:

perryridge account(X , Y) :– account(X , “Perryridge”, Y)

The layering of view relations in the program appears in Figure 27.9. The relation
account is in the database. Relation interest rate is in layer 1, since all the relations
used in the two rules defining it are in the database. Relation perryridge account
is similarly in layer 1. Finally, relation interest is in layer 2, since it is not in layer 1
and all the relations used in the rule defining it are in the database or in layers lower
than 2.

We can now define the semantics of a Datalog program in terms of the layering of
view relations. Let the layers in a given program be 1, 2,… , n. Let i denote the set of
all rules defining view relations in layer i.

• We define I0 to be the set of facts stored in the database, and we define I1 as

I1 = I0 ∪ infer(1, I0)

• We proceed in a similar fashion, defining I2 in terms of I1 and 2, and so on, using
the following definition:

Ii+1 = Ii ∪ infer(i+1, Ii)

18 Chapter 27 Formal-Relational Query Languages

• Finally, the set of facts in the view relations defined by the program (also called
the semantics of the program) is given by the set of facts In corresponding to the
highest layer n.

For the program in Figure 27.6, I0 is the set of facts in the database, and I1 is the set
of facts in the database along with all facts that we can infer from I0 using the rules for
relations interest rate and perryridge account. Finally, I2 contains the facts in I1 along
with the facts for relation interest that we can infer from the facts in I1 by the rule
defining interest. The semantics of the program—that is, the set of those facts that are
in each of the view relations—is defined as the set of facts I2.

27.4.4 Safety

It is possible to write rules that generate an infinite number of answers. Consider the
rule

gt(X , Y) :– X > Y

Since the relation defining > is infinite, this rule would generate an infinite number
of facts for the relation gt, which calculation would, correspondingly, take an infinite
amount of time and space.

The use of negation can also cause similar problems. Consider the rule:

not in loan(L, B, A) :– not loan(L, B, A)

The idea is that a tuple (loan number, branch name, amount) is in view relation not in
loan if the tuple is not present in the loan relation. However, if the set of possible

loan numbers, branch names, and balances is infinite, the relation not in loan would
be infinite as well.

Finally, if we have a variable in the head that does not appear in the body, we may
get an infinite number of facts where the variable is instantiated to different values.

So that these possibilities are avoided, Datalog rules are required to satisfy the
following safety conditions:

1. Every variable that appears in the head of the rule also appears in a nonarithmetic
positive literal in the body of the rule.

2. Every variable appearing in a negative literal in the body of the rule also appears
in some positive literal in the body of the rule.

If all the rules in a nonrecursive Datalog program satisfy the preceding safety con-
ditions, then all the view relations defined in the program can be shown to be finite, as
long as all the database relations are finite. The conditions can be weakened somewhat

27.4 Datalog 19

to allow variables in the head to appear only in an arithmetic literal in the body in some
cases. For example, in the rule

p(A) :– q(B), A = B + 1

we can see that if relation q is finite, then so is p, according to the properties of addition,
even though variable A appears in only an arithmetic literal.

27.4.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent in ex-
pressive power to expressions using the basic operations in relational algebra (∪, −, ×,
σ, Π, and ρ). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account name from account, we use

query(A) :– account(A, N , B)

We can obtain the Cartesian product of two relations r1 and r2 in Datalog as fol-
lows:

query(X1, X2,… , Xn, Y1, Y2,… , Ym) :– r1(X1, X2,… , Xn), r2(Y1, Y2,… , Ym)

where r1 is of arity n, and r2 is of arity m, and the X1, X2,… , Xn, Y1, Y2,… , Ym are all
distinct variable names.

We form the union of two relations r1 and r2 (both of arity n) in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn)
query(X1, X2,… , Xn) :– r2(X1, X2,… , Xn)

We form the set difference of two relations r1 and r2 in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn), not r2(X1, X2,… , Xn)

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator ρ is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration as

20 Chapter 27 Formal-Relational Query Languages

an exercise for you to carry out. You can thus establish the equivalence of the basic op-
erations of relational algebra and nonrecursive Datalog without arithmetic operations.

Certain extensions to Datalog support the relational update operations (insertion,
deletion, and update). The syntax for such operations varies from implementation to
implementation. Some systems allow the use of+ or− in rule heads to denote relational
insertion and deletion. For example, we can move all accounts at the Perryridge branch
to the Johnstown branch by executing

+ account(A, “Johnstown”, B) :– account(A, “Perryridge”, B)
− account(A, “Perryridge”, B) :– account(A, “Perryridge”, B)

Some implementations of Datalog also support the aggregation operation of ex-
tended relational algebra. Again, there is no standard syntax for this operation.

27.4.6 Recursion in Datalog

Several database applications deal with structures that are similar to tree data struc-
tures. For example, consider employees in an organization. Some of the employees are
managers. Each manager manages a set of people who report to him or her. But each
of these people may in turn be managers, and they in turn may have other people who
report to them. Thus, employees may be organized in a structure similar to a tree.

Suppose that we have a relation schema

Manager schema = (employee name, manager name)

Let manager be a relation on the preceding schema.
Suppose now that we want to find out which employees are supervised, directly or

indirectly by a given manager—say, Jones. Thus, if the manager of Alon is Barinsky,
and the manager of Barinsky is Estovar, and the manager of Estovar is Jones, then
Alon, Barinsky, and Estovar are the employees controlled by Jones. People often write
programs to manipulate tree data structures by recursion. Using the idea of recursion,
we can define the set of employees controlled by Jones as follows: The people super-
vised by Jones are (1) people whose manager is Jones and (2) people whose manager
is supervised by Jones. Note that case (2) is recursive.

We can encode the preceding recursive definition as a recursive Datalog view,
called empl jones:

empl jones(X) :– manager(X , “Jones”)
empl jones(X) :– manager(X , Y), empl jones(Y)

The first rule corresponds to case (1); the second rule corresponds to case (2). The view
empl jones depends on itself because of the second rule; hence, the preceding Datalog
program is recursive. We assume that recursive Datalog programs contain no rules with

27.4 Datalog 21

procedure Datalog-Fixpoint
I = set of facts in the database
repeat

Old I = I
I = I ∪ infer(, I)

until I = Old I

Figure 27.10 Datalog-Fixpoint procedure.

negative literals. The reason will become clear later. The bibliographical notes refer to
papers that describe where negation can be used in recursive Datalog programs.

The view relations of a recursive program that contains a set of rules are de-
fined to contain exactly the set of facts I computed by the iterative procedure Datalog-
Fixpoint in Figure 27.10. The recursion in the Datalog program has been turned into
an iteration in the procedure. At the end of the procedure, infer(, I) ∪ D = I , where
D is the set of facts in the database, and I is called a fixed point of the program.

Consider the program defining empl jones, with the relation manager, as in Fig-
ure 27.11. The set of facts computed for the view relation empl jones in each iteration
appears in Figure 27.12. In each iteration, the program computes one more level of em-
ployees under Jones and adds it to the set empl jones. The procedure terminates when
there is no change to the set empl jones, which the system detects by finding I = Old I .
Such a termination point must be reached, since the set of managers and employees is
finite. On the given manager relation, the procedure Datalog-Fixpoint terminates after
iteration 4, when it detects that no new facts have been inferred.

You should verify that, at the end of the iteration, the view relation empl jones
contains exactly those employees who work under Jones. To print out the names of the
employees supervised by Jones defined by the view, you can use the query

? empl jones(N)

employee name manager name

Alon Barinsky
Barinsky Estovar
Corbin Duarte
Duarte Jones
Estovar Jones
Jones Klinger
Rensal Klinger

Figure 27.11 The manager relation.

22 Chapter 27 Formal-Relational Query Languages

Iteration number Tuples in empl jones

0
1 (Duarte), (Estovar)
2 (Duarte), (Estovar), (Barinsky), (Corbin)
3 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
4 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)

Figure 27.12 Employees of Jones in iterations of procedure Datalog-Fixpoint.

To understand procedure Datalog-Fixpoint, we recall that a rule infers new facts
from a given set of facts. Iteration starts with a set of facts I set to the facts in the
database. These facts are all known to be true, but there may be other facts that are
true as well.1 Next, the set of rules in the given Datalog program is used to infer
what facts are true, given that facts in I are true. The inferred facts are added to I , and
the rules are used again to make further inferences. This process is repeated until no
new facts can be inferred.

For safe Datalog programs, we can show that there will be some point where no
more new facts can be derived; that is, for some k, Ik+1 = Ik. At this point, then, we
have the final set of true facts. Further, given a Datalog program and a database, the
fixed-point procedure infers all the facts that can be inferred to be true.

If a recursive program contains a rule with a negative literal, the following problem
can arise. Recall that when we make an inference by using a ground instantiation of a
rule, for each negative literal not q in the rule body we check that q is not present in the
set of facts I . This test assumes that q cannot be inferred later. However, in the fixed-
point iteration, the set of facts I grows in each iteration, and even if q is not present
in I at one iteration, it may appear in I later. Thus, we may have made an inference in
one iteration that can no longer be made at an earlier iteration, and the inference was
incorrect. We require that a recursive program should not contain negative literals, in
order to avoid such problems.

Instead of creating a view for the employees supervised by a specific manager Jones,
we can create a more general view relation empl that contains every tuple (X , Y) such
that X is directly or indirectly managed by Y , using the following program (also shown
in Figure 27.7):

empl(X , Y) :– manager(X , Y)
empl(X , Y) :– manager(X , Z), empl(Z, Y)

To find the direct and indirect subordinates of Jones, we simply use the query

1The word fact is used in a technical sense to note membership of a tuple in a relation. Thus, in the Datalog sense of
“fact,” a fact may be true (the tuple is indeed in the relation) or false (the tuple is not in the relation).

27.4 Datalog 23

? empl(X , “Jones”)

which gives the same set of values for X as the view empl jones. Most Datalog imple-
mentations have sophisticated query optimizers and evaluation engines that can run
the preceding query at about the same speed at which they could evaluate the view empl
jones.

The view empl defined previously is called the transitive closure of the relation
manager. If the relation manager were replaced by any other binary relation R, the
preceding program would define the transitive closure of R.

27.4.7 The Power of Recursion

Datalog with recursion has more expressive power than Datalog without recursion. In
other words, there are queries on the database that we can answer by using recursion
but cannot answer without using it. For example, we cannot express transitive closure in
Datalog without using recursion (or for that matter, in SQL or QBE without recursion).
Consider the transitive closure of the relation manager. Intuitively, a fixed number of
joins can find only those employees that are some (other) fixed number of levels down
from any manager (we will not attempt to prove this result here). Since any given non-
recursive query has a fixed number of joins, there is a limit on how many levels of
employees the query can find. If the number of levels of employees in the manager re-
lation is more than the limit of the query, the query will miss some levels of employees.
Thus, a nonrecursive Datalog program cannot express transitive closure.

An alternative to recursion is to use an external mechanism, such as embedded
SQL, to iterate on a nonrecursive query. The iteration in effect implements the fixed-
point loop of Figure 27.10. In fact, that is how such queries are implemented on data-
base systems that do not support recursion. However, writing such queries by iteration
is more complicated than using recursion, and evaluation by recursion can be optimized
to run faster than evaluation by iteration.

The expressive power provided by recursion must be used with care. It is relatively
easy to write recursive programs that will generate an infinite number of facts, as this
program illustrates:

number(0)
number(A) :– number(B), A = B + 1

The program generates number(n) for all positive integers n, which is infinite and will
not terminate. The second rule of the program does not satisfy the safety condition in
Section 27.4.4. Programs that satisfy the safety condition will terminate, even if they
are recursive, provided that all database relations are finite. For such programs, tuples
in view relations can contain only constants from the database, and hence the view
relations must be finite. The converse is not true; that is, there are programs that do
not satisfy the safety conditions but that do terminate.

24 Chapter 27 Formal-Relational Query Languages

The procedure Datalog-Fixpoint iteratively uses the function infer(, I) to com-
pute what facts are true, given a recursive Datalog program. Although we considered
only the case of Datalog programs without negative literals, the procedure can also be
used on views defined in other languages, such as SQL or relational algebra, provided
that the views satisfy the conditions described next. Regardless of the language used to
define a view V , the view can be thought of as being defined by an expression EV that,
given a set of facts I , returns a set of facts EV (I) for the view relation V . Given a set of
view definitions (in any language), we can define a function infer(, I) that returns
I ∪

⋃
V∈ EV (I). The preceding function has the same form as the infer function for

Datalog.
A view V is said to be monotonic if, given any two sets of facts I1 and I2 such that

I1 ⊆ I2, then EV (I1) ⊆ EV (I2), where EV is the expression used to define V . Similarly,
the function infer is said to be monotonic if

I1 ⊆ I2 ⇒ infer(, I1) ⊆ infer(, I2)

Thus, if infer is monotonic, given a set of facts I0 that is a subset of the true facts, we can
be sure that all facts in infer(, I0) are also true. Using the same reasoning as in Section
27.4.6, we can then show that procedure Datalog-Fixpoint is sound (i.e., it computes
only true facts), provided that the function infer is monotonic.

Relational-algebra expressions that use only the operators Π, σ,×,⋈,∪,∩, or ρ are
monotonic. Recursive views can be defined by using such expressions.

However, relational expressions that use the operator − are not monotonic. For
example, let manager1 and manager2 be relations with the same schema as the manager
relation. Let

I1 = { manager1(“Alon”, “Barinsky”), manager1(“Barinsky”, “Estovar”),
manager2(“Alon”, “Barinsky”) }

and let

I2 = { manager1(“Alon”, “Barinsky”), manager1(“Barinsky”, “Estovar”),
manager2(“Alon”, “Barinsky”), manager2(“Barinsky”, “Estovar”)}

Consider the expression manager1−manager2. Now the result of the preceding expres-
sion on I1 is (“Barinsky”, “Estovar”), whereas the result of the expression on I2 is the
empty relation. But I1 ⊆ I2; hence, the expression is not monotonic. Expressions using
the grouping operation of extended relational algebra are also nonmonotonic.

The fixed-point technique does not work on recursive views defined with nonmono-
tonic expressions. However, there are instances where such views are useful, particu-
larly for defining aggregates on “part-subpart” relationships. Such relationships define

Review Terms 25

what subparts make up each part. Subparts themselves may have further subparts, and
so on; hence, the relationships, like the manager relationship, have a natural recursive
structure. An example of an aggregate query on such a structure would be to com-
pute the total number of subparts of each part. Writing this query in Datalog or in
SQL (without procedural extensions) would require the use of a recursive view on a
nonmonotonic expression. The bibliographical notes provide references to research on
defining such views.

It is possible to define some kinds of recursive queries without using views. For ex-
ample, extended relational operations have been proposed to define transitive closure,
and extensions to the SQL syntax to specify (generalized) transitive closure have been
proposed. However, recursive view definitions provide more expressive power than do
the other forms of recursive queries.

27.5 Summary

• The tuple relational calculus and the domain relational calculus are nonprocedural
languages that represent the basic power required in a relational query language.
The basic relational algebra is a procedural language that is equivalent in power to
both forms of the relational calculus when they are restricted to safe expressions.

• The relational calculi are terse, formal languages that are inappropriate for casual
users of a database system. These two formal languages form the basis for two
more user-friendly languages, QBE and Datalog.

• The tuple relational calculus and the domain relational calculus are terse, formal
languages that are inappropriate for casual users of a database system. Commercial
database systems, therefore, use languages with more “syntactic sugar.” We have
considered two query languages: QBEand Datalog.

• Datalog is derived from Prolog, but unlike Prolog, it has a declarative semantics,
making simple queries easier to write and query evaluation easier to optimize.

• Defining views is particularly easy in Datalog, and the recursive views that Datalog
supports make it possible to write queries, such as transitive-closure queries, that
cannot be written without recursion or iteration. However, no accepted standards
exist for important features, such as grouping and aggregation, in Datalog. Datalog
remains mainly a research language.

Review Terms

• Tuple relational calculus

• Domain relational calculus

• Safety of expressions

• Expressive power of languages

• Datalog

• Rules

26 Chapter 27 Formal-Relational Query Languages

• Uses

• Defines

• Positive literal

• Negative literal

• Fact

• Recursive view

• Nonrecursive view

• Instantiation

• Infer

• Semantics

• Safety

• Fixed point

• Transitive closure

• Monotonic view definition

Practice Exercises

27.1 Let the following relation schemas be given:

R = (A, B, C)

S = (D, E, F)

Let relations r(R) and s(S) be given. Give an expression in the tuple relational
calculus that is equivalent to each of the following:

a. ΠA(r)

b. σB= 17 (r)

c. r × s

d. ΠA,F (σC =D(r × s))

27.2 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give an
expression in the domain relational calculus that is equivalent to each of the
following:

a. ΠA(r1)

b. σB= 17 (r1)

c. r1 ∪ r2

d. r1 ∩ r2

e. r1 − r2

f. ΠA,B(r1) ⋈ ΠB,C(r2)

27.3 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write
expressions in relational algebra for each of the following queries:

a. { < a > | ∃ b (< a, b > ∈ r ∧ b = 7)}

b. { < a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s}

Practice Exercises 27

employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)
manages (person name, manager name)

Figure 27.13 Employee database.

c. { < a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 > ∈
r ∧ b1 > b2))}

27.4 Consider the relational database of Figure 27.13 where the primary keys are
underlined. Give an expression in tuple relational calculus for each of the fol-
lowing queries:

a. Find all employees who work directly for “Jones.”

b. Find all cities of residence of all employees who work directly for
“Jones.”

c. Find the name of the manager of the manager of “Jones.”

d. Find those employees who earn more than all employees living in the
city “Mumbai.”

27.5 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write
expressions in Datalog for each of the following queries:

a. { < a > | ∃ b (< a, b > ∈ r ∧ b = 17)}

b. { < a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s}

c. { < a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 > ∈
r ∧ b1 > b2))}

27.6 Consider the relational database of Figure 27.13 where the primary keys are
underlined. Give an expression in Datalog for each of the following queries:

a. Find all employees who work (directly or indirectly) under the manager
“Jones.”

b. Find all cities of residence of all employees who work (directly or indi-
rectly) under the manager “Jones.”

c. Find all pairs of employees who have a (direct or indirect) manager in
common.

28 Chapter 27 Formal-Relational Query Languages

d. Find all pairs of employees who have a (direct or indirect) manager in
common and are at the same number of levels of supervision below the
common manager.

27.7 Describe how an arbitrary Datalog rule can be expressed as an extended
relational-algebra view.

Exercises

27.8 Consider the employee database of Figure 27.13. Give expressions in tuple re-
lational calculus for each of the following queries:

a. Find the names of all employees who work for “FBC”.

b. Find the names and cities of residence of all employees who work for
“FBC”.

c. Find the names, street addresses, and cities of residence of all employees
who work for “FBC” and earn more than $10,000.

d. Find all employees who live in the same city as that in which the company
for which they work is located.

e. Find all employees who live in the same city and on the same street as
their managers.

f. Find all employees in the database who do not work for “FBC”.

g. Find all employees who earn more than every employee of “SBC”.

h. Assume that the companies may be located in several cities. Find all
companies located in every city in which “SBC” is located.

27.9 Repeat Exercise 27.8, writing domain relational calculus queries instead of tu-
ple relational calculus queries.

27.10 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write
relational-algebra expressions equivalent to the following domain-relational-
calculus expressions:

a. { < a > | ∃ b (< a, b > ∈ r ∧ b = 17)}

b. { < a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s}

c. { < a > | ∃ b (< a, b >∈ r) ∨ ∀ c (∃ d (< d, c >∈ s) ⇒< a, c >∈ s)}

d. { < a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 >

∈ r ∧ b1 > b2))}

Further Reading 29

27.11 Repeat Exercise 27.10, writing SQL queries instead of relational-algebra expres-
sions.

27.12 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Using
the special constant null, write tuple-relational-calculus expressions equivalent
to each of the following:

a. r ⟖ s

b. r ⟗ s

c. r ⟕ s

27.13 Give a tuple-relational-calculus expression to find the maximum value in rela-
tion r(A).

27.14 Give a tuple-relational-calculus expression to find the maximum value in rela-
tion r(A).

27.15 Repeat Exercise 27.8 using Datalog.

27.16 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give ex-
pressions in Datalog equivalent to each of the following queries:

a. r1 ∪ r2

b. r1 ∩ r2

c. r1 − r2

d. ΠAB(r1) ⋈ ΠBC(r2)

27.17 Write an extended relational-algebra view equivalent to the Datalog rule

p(A, C, D) :– q1(A, B), q2(B, C), q3(4, B), D = B + 1.

Tools

The Coral system from the University of Wisconsin–Madison
(research.cs.wisc.edu/coral) is an implementation of Datalog. The XSB system
from Stony Brook University (xsb.sourceforge.net) is a widely used Prolog implemen-
tation that supports database querying; recall that Datalog is a nonprocedural subset
of Prolog.

Further Reading

Extensions to the relational model and discussions of incorporation of null values in
the relational algebra (the RM/T model), as well as outer joins, are in [Codd (1979)].

http://research.cs.wisc.edu/coral
http://xsb.sourceforge.net
https://doi.acm.org/10.1145/320107.320109

30 Chapter 27 Formal-Relational Query Languages

[Codd (1990)] is a compendium of E. F. Codd’s papers on the relational model. Outer
joins are also discussed in [Date (1983)].

The original definition of tuple relational calculus is in [Codd (1972)]. A for-
mal proof of the equivalence of tuple relational calculus and relational algebra is in
[Codd (1972)]. Several extensions to the relational calculus have been proposed. [Klug
(1982)] and [Escobar-Molano et al. (1993)] describe extensions to scalar aggregate
functions.

Datalog programs that have both recursion and negation can be assigned a simple
semantics if the negation is “stratified”—that is, if there is no recursion through nega-
tion. [Chandra and Harel (1982)] and [Apt and Pugin (1987)] discuss stratified nega-
tion. An important extension, called the modular-stratification semantics, which handles
a class of recursive programs with negative literals, is discussed in [Ross (1990)]; an
evaluation technique for such programs is described by [Ramakrishnan et al. (1992)].

Bibliography

[Apt and Pugin (1987)] K. R. Apt and J. M. Pugin, “Maintenance of Stratified Database
Viewed as a Belief Revision System”, In Proc. of the ACM Symposium on Principles of Database
Systems (1987), pages 136–145.

[Chandra and Harel (1982)] A. K. Chandra and D. Harel, “Structure and Complexity of Re-
lational Queries”, Journal of Computer and System Sciences, Volume 15, Number 10 (1982),
pages 99–128.

[Codd (1972)] E. F. Codd. “Further Normalization of the Data Base Relational Model”, In
[Rustin (1972)], pages 33–64 (1972).

[Codd (1979)] E. F. Codd, “Extending the Database Relational Model to Capture More
Meaning”, ACM Transactions on Database Systems, Volume 4, Number 4 (1979), pages 397–
434.

[Codd (1990)] E. F. Codd, The Relational Model for Database Management: Version 2, Addi-
son Wesley (1990).

[Date (1983)] C. J. Date, “The Outer Join”, In Proc. of the International Conference on
Databases, John Wiley and Sons (1983), pages 76–106.

[Escobar-Molano et al. (1993)] M. Escobar-Molano, R. Hull, and D. Jacobs, “Safety and
Translation of Calculus Queries with Scalar Functions”, In Proc. of the ACM SIGMOD Conf.
on Management of Data (1993), pages 253–264.

[Klug (1982)] A. Klug, “Equivalence of Relational Algebra and Relational Calculus Query
Languages Having Aggregate Functions”, Journal of the ACM, Volume 29, Number 3 (1982),
pages 699–717.

[Ramakrishnan et al. (1992)] R. Ramakrishnan, D. Srivastava, and S. Sudarshan, Controlling
the Search in Bottom-up Evaluation (1992).

http://scholar.google.com/scholar?hl/en&q=E. F. Codd The Relational Model for Database Management: Version 2
http://scholar.google.com/scholar?hl/en&q=C. J. Date The Outer Join
http://scholar.google.com/scholar?hl/en&q=E. F. Codd Further Normalization of the Data Base Relational Model
http://scholar.google.com/scholar?hl/en&q=E. F. Codd Further Normalization of the Data Base Relational Model
https://doi.acm.org/10.1145/322326.322332
https://doi.acm.org/10.1145/153850.153909
http://scholar.google.com/scholar?hl/en&q=A. K. Chandra and D. Harel Structure and Complexity of Relational Queries
https://doi.acm.org/10.1145/28659.28674
https://doi.acm.org/10.1145/298514.298558
http://scholar.google.com/scholar?hl/en&q=R. Ramakrishnan and D. Srivastava and S. Sudarshan Controlling the Search in Bottom-up Evaluation
https://doi.acm.org/10.1145/28659.28674
https://doi.acm.org/10.1145/28659.28674
http://scholar.google.com/scholar?hl/en&q=A. K. Chandra and D. Harel Structure and Complexity of Relational Queries
http://scholar.google.com/scholar?hl/en&q=A. K. Chandra and D. Harel Structure and Complexity of Relational Queries
http://scholar.google.com/scholar?hl/en&q=E. F. Codd Further Normalization of the Data Base Relational Model
http://scholar.google.com/scholar?hl/en&q=E. F. Codd Further Normalization of the Data Base Relational Model
http://scholar.google.com/scholar?hl/en&q=R. Rustin Data Base Systems
https://doi.acm.org/10.1145/320107.320109
https://doi.acm.org/10.1145/320107.320109
http://scholar.google.com/scholar?hl/en&q=E. F. Codd The Relational Model for Database Management: Version 2
http://scholar.google.com/scholar?hl/en&q=E. F. Codd The Relational Model for Database Management: Version 2
http://scholar.google.com/scholar?hl/en&q=C. J. Date The Outer Join
http://scholar.google.com/scholar?hl/en&q=C. J. Date The Outer Join
https://doi.acm.org/10.1145/153850.153909
https://doi.acm.org/10.1145/153850.153909
https://doi.acm.org/10.1145/322326.322332
https://doi.acm.org/10.1145/322326.322332
http://scholar.google.com/scholar?hl/en&q=R. Ramakrishnan and D. Srivastava and S. Sudarshan Controlling the Search in Bottom-up Evaluation
http://scholar.google.com/scholar?hl/en&q=R. Ramakrishnan and D. Srivastava and S. Sudarshan Controlling the Search in Bottom-up Evaluation

Further Reading 31

[Ross (1990)] K. A. Ross, “Modular Stratification and Magic Sets for DATALOG Programs
with Negation”, In Proc. of the ACM SIGMOD Conf. on Management of Data (1990), pages
161–171.

[Rustin (1972)] R. Rustin, Data Base Systems, Prentice Hall (1972).

Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.

https://doi.acm.org/10.1145/298514.298558
https://doi.acm.org/10.1145/298514.298558
http://scholar.google.com/scholar?hl/en&q=R. Rustin Data Base Systems
http://scholar.google.com/scholar?hl/en&q=R. Rustin Data Base Systems

	Formal-Relational Query Languages
	The Tuple Relational Calculus
	The Domain Relational Calculus
	Expressive Power of Pure Relational Query Languages
	Datalog
	Summary
	Exercises
	Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

